122 research outputs found

    Improvements to context based self-supervised learning

    Full text link
    We develop a set of methods to improve on the results of self-supervised learning using context. We start with a baseline of patch based arrangement context learning and go from there. Our methods address some overt problems such as chromatic aberration as well as other potential problems such as spatial skew and mid-level feature neglect. We prevent problems with testing generalization on common self-supervised benchmark tests by using different datasets during our development. The results of our methods combined yield top scores on all standard self-supervised benchmarks, including classification and detection on PASCAL VOC 2007, segmentation on PASCAL VOC 2012, and "linear tests" on the ImageNet and CSAIL Places datasets. We obtain an improvement over our baseline method of between 4.0 to 7.1 percentage points on transfer learning classification tests. We also show results on different standard network architectures to demonstrate generalization as well as portability. All data, models and programs are available at: https://gdo-datasci.llnl.gov/selfsupervised/.Comment: Accepted paper at CVPR 201

    A bottom–up model of spatial attention predicts human error patterns in rapid scene recognition

    Get PDF
    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom–up visual processing (attentional selection and/or recognition) or top–down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of “surprise” in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences

    Student Self-Assessment: A Tool for Engaging Management Students in Their Learning

    Get PDF
    This article discusses the use of student self-assessment (SSA) for formative and summative assessment in two undergraduate programs, a management program and a leadership program, to encourage students to become more engaged in their learning. Using action research, we used an iterative process of changing or refining our methods to accommodate the differences in our teaching environments, concluding that different methods may be desirable in different environments, and that students appear to benefit from SSA regardless of the method used. Five overlapping themes emerged in the data we collected: how SSA 1) provided students with the opportunity to see the transformative impact their educations had on them, 2) acted as a motivator to their performance, 3) encouraged them to take personal responsibility for their learning, 4) had impact on their reflections as learners, and 5) encouraged them to be more honest and self-critical about their performance

    Computational modeling and exploration of contour integration for visual saliency

    Get PDF

    Class-Agnostic Counting

    Full text link
    Nearly all existing counting methods are designed for a specific object class. Our work, however, aims to create a counting model able to count any class of object. To achieve this goal, we formulate counting as a matching problem, enabling us to exploit the image self-similarity property that naturally exists in object counting problems. We make the following three contributions: first, a Generic Matching Network (GMN) architecture that can potentially count any object in a class-agnostic manner; second, by reformulating the counting problem as one of matching objects, we can take advantage of the abundance of video data labeled for tracking, which contains natural repetitions suitable for training a counting model. Such data enables us to train the GMN. Third, to customize the GMN to different user requirements, an adapter module is used to specialize the model with minimal effort, i.e. using a few labeled examples, and adapting only a small fraction of the trained parameters. This is a form of few-shot learning, which is practical for domains where labels are limited due to requiring expert knowledge (e.g. microbiology). We demonstrate the flexibility of our method on a diverse set of existing counting benchmarks: specifically cells, cars, and human crowds. The model achieves competitive performance on cell and crowd counting datasets, and surpasses the state-of-the-art on the car dataset using only three training images. When training on the entire dataset, the proposed method outperforms all previous methods by a large margin.Comment: Asian Conference on Computer Vision (ACCV), 201

    Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients

    Full text link
    Discovering the underlying mathematical expressions describing a dataset is a core challenge for artificial intelligence. This is the problem of symbolic regression\textit{symbolic regression}. Despite recent advances in training neural networks to solve complex tasks, deep learning approaches to symbolic regression are underexplored. We propose a framework that leverages deep learning for symbolic regression via a simple idea: use a large model to search the space of small models. Specifically, we use a recurrent neural network to emit a distribution over tractable mathematical expressions and employ a novel risk-seeking policy gradient to train the network to generate better-fitting expressions. Our algorithm outperforms several baseline methods (including Eureqa, the gold standard for symbolic regression) in its ability to exactly recover symbolic expressions on a series of benchmark problems, both with and without added noise. More broadly, our contributions include a framework that can be applied to optimize hierarchical, variable-length objects under a black-box performance metric, with the ability to incorporate constraints in situ, and a risk-seeking policy gradient formulation that optimizes for best-case performance instead of expected performance.Comment: Published at International Conference on Learning Representations, 202

    Improving exploration in policy gradient search: Application to symbolic optimization

    Full text link
    Many machine learning strategies designed to automate mathematical tasks leverage neural networks to search large combinatorial spaces of mathematical symbols. In contrast to traditional evolutionary approaches, using a neural network at the core of the search allows learning higher-level symbolic patterns, providing an informed direction to guide the search. When no labeled data is available, such networks can still be trained using reinforcement learning. However, we demonstrate that this approach can suffer from an early commitment phenomenon and from initialization bias, both of which limit exploration. We present two exploration methods to tackle these issues, building upon ideas of entropy regularization and distribution initialization. We show that these techniques can improve the performance, increase sample efficiency, and lower the complexity of solutions for the task of symbolic regression.Comment: Published in 1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 202
    • …
    corecore