344 research outputs found
Non-transitive maps in phase synchronization
Concepts from the Ergodic Theory are used to describe the existence of
non-transitive maps in attractors of phase synchronous chaotic systems. It is
shown that for a class of phase-coherent systems, e.g. the sinusoidally forced
Chua's circuit and two coupled R{\"o}ssler oscillators, phase synchronization
implies that such maps exist. These ideas are also extended to other coupled
chaotic systems. In addition, a phase for a chaotic attractor is defined from
the tangent vector of the flow. Finally, it is discussed how these maps can be
used to real time detection of phase synchronization in experimental systems
Carnap’s Aufbau in the Weimar Context
Quine’s classical classic interpretation succinctly characterized characterizes Carnap’s Aufbau as an attempt “to account for the external world as a logical construct of sense-data....” Consequently, “Russell” was characterized as the most important influence on the Aufbau. Those times have passed. Formulating a comprehensive and balanced interpretation of the Aufbau has turned out to be a difficult task and one that must take into account several disjointed sources. My thesis is that the core of the Aufbau rested on a problem that had haunted German philosophy since the end of the 19th century. In terms fashionable at the time, this problem may be expressed as the polarity between Leben and Geist that characterized German philosophy during the years of the Weimar Republic. At that time, many philosophers, including Cassirer, Rickert and Vaihinger, were engaged in overcoming this polarity. As I will show, Carnap’s Aufbau joined the ranks of these projects. This suggests that Lebensphilosophie and Rickert’s System der Philosophie exerted a strong influence on Carnap’s projects, an influence that is particularly conspicuous in his unpublished manuscript Vom Chaos zur Wirklichkeit. Carnap himself asserted that this manuscript could be considered “the germ of the constitution theory” of the Aufbau. Reading Chaos also reveals another strong but neglected influence on the Aufbau, namely a specific version of neutral monism put forward by the philosopher and psychologist Theodor Ziehen before World War I. Ziehen’s work contributed much to the invention of the constitutional method of quasi-analysis. -/
Topological Aspects of Epistemology and Metaphysics
The aim of this paper is to show that (elementary) topology may be useful for dealing with problems of epistemology and metaphysics. More precisely, I want to show that the introduction of topological structures may elucidate the role of the spatial structures (in a broad sense) that underly logic and cognition. In some detail I’ll deal with “Cassirer’s problem” that may be characterized as an early forrunner of Goodman’s “grue-bleen” problem. On a larger scale, topology turns out to be useful in elaborating the approach of conceptual spaces that in the last twenty years or so has found quite a few applications in cognitive science, psychology, and linguistics. In particular, topology may help distinguish “natural” from “not-so-natural” concepts. This classical problem that up to now has withstood all efforts to solve (or dissolve) it by purely logical methods. Finally, in order to show that a topological perspective may also offer a fresh look on classical metaphysical problems, it is shown that Leibniz’s famous principle of the identity of indiscernibles is closely related to some well-known topological separation axioms. More precisely, the topological perspective gives rise in a natural way to some novel variations of Leibniz’s principle
Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism
<p>Abstract</p> <p>Background</p> <p>Septic encephalopathy is a severe brain dysfunction caused by systemic inflammation in the absence of direct brain infection. Changes in cerebral blood flow, release of inflammatory molecules and metabolic alterations contribute to neuronal dysfunction and cell death.</p> <p>Methods</p> <p>To investigate the relation of electrophysiological, metabolic and morphological changes caused by SE, we simultaneously assessed systemic circulation, regional cerebral blood flow and cortical electroencephalography in rats exposed to bacterial lipopolysaccharide. Additionally, cerebral glucose uptake, astro- and microglial activation as well as changes of inflammatory gene transcription were examined by small animal PET using [18F]FDG, immunohistochemistry, and real time PCR.</p> <p>Results</p> <p>While the systemic hemodynamic did not change significantly, regional cerebral blood flow was decreased in the cortex paralleled by a decrease of alpha activity of the electroencephalography. Cerebral glucose uptake was reduced in all analyzed neocortical areas, but preserved in the caudate nucleus, the hippocampus and the thalamus. Sepsis enhanced the transcription of several pro- and anti-inflammatory cytokines and chemokines including tumor necrosis factor alpha, interleukin-1 beta, transforming growth factor beta, and monocot chemoattractant protein 1 in the cerebrum. Regional analysis of different brain regions revealed an increase in ED1-positive microglia in the cortex, while total and neuronal cell counts decreased in the cortex and the hippocampus.</p> <p>Conclusion</p> <p>Together, the present study highlights the complexity of sepsis induced early impairment of neuronal metabolism and activity. Since our model uses techniques that determine parameters relevant to the clinical setting, it might be a useful tool to develop brain specific therapeutic strategies for human septic encephalopathy.</p
Identifying phase synchronization clusters in spatially extended dynamical systems
We investigate two recently proposed multivariate time series analysis
techniques that aim at detecting phase synchronization clusters in spatially
extended, nonstationary systems with regard to field applications. The starting
point of both techniques is a matrix whose entries are the mean phase coherence
values measured between pairs of time series. The first method is a mean field
approach which allows to define the strength of participation of a subsystem in
a single synchronization cluster. The second method is based on an eigenvalue
decomposition from which a participation index is derived that characterizes
the degree of involvement of a subsystem within multiple synchronization
clusters. Simulating multiple clusters within a lattice of coupled Lorenz
oscillators we explore the limitations and pitfalls of both methods and
demonstrate (a) that the mean field approach is relatively robust even in
configurations where the single cluster assumption is not entirely fulfilled,
and (b) that the eigenvalue decomposition approach correctly identifies the
simulated clusters even for low coupling strengths. Using the eigenvalue
decomposition approach we studied spatiotemporal synchronization clusters in
long-lasting multichannel EEG recordings from epilepsy patients and obtained
results that fully confirm findings from well established neurophysiological
examination techniques. Multivariate time series analysis methods such as
synchronization cluster analysis that account for nonlinearities in the data
are expected to provide complementary information which allows to gain deeper
insights into the collective dynamics of spatially extended complex systems
Toward a Theory of the Pragmatic A Priori: From Carnap to Lewis and Beyond
The aim of this paper is make a contribution to the ongoing search for an adequate concept of the a priori element in scientific knowledge. The point of departure is C.I. Lewis’s account of a pragmatic a priori put forward in his "Mind and the World Order" (1929). Recently, Hasok Chang in "Contingent Transcendental Arguments for Metaphysical Principles" (2008) reconsidered Lewis’s pragmatic a priori and proposed to conceive it as the basic ingredient of the dynamics of an embodied scientific reason. The present paper intends to further elaborate Chang’s account by relating it with some conceptual tools from cognitive semantics and certain ideas that first emerged in the context of the category-theoretical foundations of mathematics
Theory of Concepts
UID/FIL/00183/2013authorsversionpublishe
Neurons in the human amygdala encode face identity, but not gaze direction
The amygdala is important for face processing, and direction of eye gaze is one of the most socially salient facial signals. Recording from over 200 neurons in the amygdala of neurosurgical patients, we found robust encoding of the identity of neutral-expression faces, but not of their direction of gaze. Processing of gaze direction may rely on a predominantly cortical network rather than the amygdala
Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)
A large group of industrially important polymerization processes is carried out in dispersed systems. These processes differ with respect to their physical nature, mechanism of particle formation, particle morphology, size, charge, types of interparticle interactions, and many other aspects. Polymer dispersions, and polymers derived from polymerization in dispersed systems, are used in diverse areas such as paints, adhesives, microelectronics, medicine, cosmetics, biotechnology, and others. Frequently, the same names are used for different processes and products or different names are used for the same processes and products. The document contains a list of recommended terms and definitions necessary for the unambiguous description of processes, products, parameters, and characteristic features relevant to polymers in dispersed systems
Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient
Background: Investigation of the functioning of the brain in living systems
has been a major effort amongst scientists and medical practitioners. Amongst
the various disorder of the brain, epilepsy has drawn the most attention
because this disorder can affect the quality of life of a person. In this paper
we have reinvestigated the EEGs for normal and epileptic patients using
surrogate analysis, probability distribution function and Hurst exponent.
Results: Using random shuffled surrogate analysis, we have obtained some of
the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev
E 2001, 64:061907], for the epileptic patients during seizure. Probability
distribution function shows that the activity of an epileptic brain is
nongaussian in nature. Hurst exponent has been shown to be useful to
characterize a normal and an epileptic brain and it shows that the epileptic
brain is long term anticorrelated whereas, the normal brain is more or less
stochastic. Among all the techniques, used here, Hurst exponent is found very
useful for characterization different cases.
Conclusions: In this article, differences in characteristics for normal
subjects with eyes open and closed, epileptic subjects during seizure and
seizure free intervals have been shown mainly using Hurst exponent. The H shows
that the brain activity of a normal man is uncorrelated in nature whereas,
epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis,
Hurst exponent. 9 page
- …