470 research outputs found
Analysis of fusion-fission dynamics by pre-scission neutron emission in Ni+Pb
We analyzed the experimental data of the pre-scission neutron multiplicity in
connection with fission fragments in the reaction Ni+Pb at the
incident energy corresponding to the excitation energy of compound nucleus
=185.9 MeV, which was performed by D\'{e}MoN group. The relation between
the pre-scission neutron multiplicity and each reaction process having
different reaction time is investigated. In order to study the fusion-fission
process accompanied by neutron emission, the fluctuation-dissipation model
combined with a statistical model is employed. It is found that the
fusion-fission process and the quasi-fission process are clearly distinguished
in correlation with the pre-scission neutron multiplicity.Comment: 11 figure
Quantification of spin alignment in fission by simultaneous treatment of gamma and conversion electron angular distributions
The study of the angular momentum properties of fission fragments can shed
light about the complex mechanisms that characterize the fission process. One
quantity that is of significant interest, and has not yet been studied
adequately, is the alignment of the fragments, which is the cause of anisotropy
of the {\gamma} rays along the fission axis and has been observed in various
past and recent experiments. In this work, we have performed calculations using
the FIFRELIN code, in an attempt to quantify the alignment of the nuclear spins
after neutron-emission. Under the statistical tensor formalism of angular
distributions, the conversion-electron and the {\gamma}-ray angular
distributions can be treated simultaneously in an event-by-event calculation.
This enables a first prediction of the conversion-electron angular distribution
with respect to the fission axis. An average value for the alignment of fission
fragments is deduced for 252Cf, with the use of recent experimental data. The
method used for the present work can serve as a starting point for future
theoretical and experimental studies in terms of {\gamma} and
conversion-electron spectroscopy in view of studying the spin alignment of
individual fission fragments, which could further improve our understanding on
the process of fission
Isocaling and the Symmetry Energy in the Multifragmentation Regime of Heavy Ion Collisions
The ratio of the symmetry energy coefficient to temperature, , in
Fermi energy heavy ion collisions, has been experimentally extracted as a
function of the fragment atomic number using isoscaling parameters and the
variance of the isotope distributions. The extracted values have been compared
to the results of calculations made with an Antisymmetrized Molecular Dynamics
(AMD) model employing a statistical decay code to account for deexcitation of
excited primary fragments. The experimental values are in good agreement with
the values calculated but are significantly different from those characterizing
the yields of the primary AMD fragments.Comment: 12 pages, 6 figure
The Quantum Nature of a Nuclear Phase Transition
In their ground states, atomic nuclei are quantum Fermi liquids. At finite
temperatures and low densities, these nuclei may undergo a phase change similar
to, but substantially different from, a classical liquid gas phase transition.
As in the classical case, temperature is the control parameter while density
and pressure are the conjugate variables. At variance with the classical case,
in the nucleus the difference between the proton and neutron concentrations
acts as an additional order parameter, for which the symmetry potential is the
conjugate variable. Different ratios of the neutron to proton concentrations
lead to different critical points for the phase transition. This is analogous
to the phase transitions occurring in He-He liquid mixtures. We
present experimental results which reveal the N/Z dependence of the phase
transition and discuss possible implications of these observations in terms of
the Landau Free Energy description of critical phenomena.Comment: 5 pages, 4 figure
Isobaric Yield Ratios and The Symmetry Energy In Fermi Energy Heavy Ion Reactions
The relative isobaric yields of fragments produced in a series of heavy ion
induced multifragmentation reactions have been analyzed in the framework of a
Modified Fisher Model, primarily to determine the ratio of the symmetry energy
coefficient to the temperature, , as a function of fragment mass A. The
extracted values increase from 5 to ~16 as A increases from 9 to 37. These
values have been compared to the results of calculations using the
Antisymmetrized Molecular Dynamics (AMD) model together with the statistical
decay code Gemini. The calculated ratios are in good agreement with those
extracted from the experiment. In contrast, the ratios determined from fitting
the primary fragment distributions from the AMD model calculation are ~ 4 and
show little variation with A. This observation indicates that the value of the
symmetry energy coefficient derived from final fragment observables may be
significantly different than the actual value at the time of fragment
formation. The experimentally observed pairing effect is also studied within
the same simulations. The Coulomb coefficient is also discussed.Comment: 10 pages, 12 figure
Critical behavior of the isotope yield distributions in the Multifragmentation Regime of Heavy Ion Reactions
Isotope yields have been analyzed within the framework of a Modified Fisher
Model to study the power law yield distribution of isotopes in the
multifragmentation regime. Using the ratio of the mass dependent symmetry
energy coefficient relative to the temperature, , extracted in
previous work and that of the pairing term, , extracted from this
work, and assuming that both reflect secondary decay processes, the
experimentally observed isotope yields have been corrected for these effects.
For a given I = N - Z value, the corrected yields of isotopes relative to the
yield of show a power law distribution, , in the mass range of and the distributions are
almost identical for the different reactions studied. The observed power law
distributions change systematically when I of the isotopes changes and the
extracted value decreases from 3.9 to 1.0 as I increases from -1 to 3.
These observations are well reproduced by a simple de-excitation model, which
the power law distribution of the primary isotopes is determined to
, suggesting that the disassembling system at the
time of the fragment formation is indeed at or very near the critical point.Comment: 5 pages, 5 figure
The Isospin Dependence Of The Nuclear Equation Of State Near The Critical Point
We discuss experimental evidence for a nuclear phase transition driven by the
different concentration of neutrons to protons. Different ratios of the neutron
to proton concentrations lead to different critical points for the phase
transition. This is analogous to the phase transitions occurring in 4He-3He
liquid mixtures. We present experimental results which reveal the N/A (or Z/A)
dependence of the phase transition and discuss possible implications of these
observations in terms of the Landau Free Energy description of critical
phenomena.Comment: 14 pages, 18 figure
A novel approach to Isoscaling: the role of the order parameter m = (N-Z)/A
Isoscaling is derived within a recently proposed modified Fisher model where
the free energy near the critical point is described by the Landau O(m^6)
theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one
of) the symmetries of the nuclear Hamiltonian. Within this framework we show
that isoscaling depends mainly on this order parameter through the 'external
(conjugate) field' H. The external field is just given by the difference in
chemical potentials of the neutrons and protons of the two sources. To
distinguish from previously employed isoscaling relationships, this approach is
dubbed: m - scaling. We discuss the relationship between this framework and the
standard isoscaling formalism and point out some substantial differences in
interpretation of experimental results which might result. These should be
investigated further both theoretically and experimentally.Comment: 14 pages, 5 figure
Experimental reconstruction of primary hot isotopes and characteristic properties of the fragmenting source in the heavy ion reactions near the Fermi energy
The characteristic properties of the hot nuclear matter existing at the time
of fragment formation in the multifragmentation events produced in the reaction
Zn + Sn at 40 MeV/nucleon are studied. A kinematical focusing
method is employed to determine the multiplicities of evaporated light
particles, associated with isotopically identified detected fragments. From
these data the primary isotopic yield distributions are reconstructed using a
Monte Carlo method. The reconstructed yield distributions are in good agreement
with the primary isotope distributions obtained from AMD transport model
simulations. Utilizing the reconstructed yields, power distribution, Landau
free energy, characteristic properties of the emitting source are examined. The
primary mass distributions exhibit a power law distribution with the critical
exponent, , for isotopes, but significantly deviates from
that for the lighter isotopes. Landau free energy plots show no strong
signature of the first order phase transition. Based on the Modified Fisher
Model, the ratios of the Coulomb and symmetry energy coefficients relative to
the temperature, and , are extracted as a function of A.
The extracted values are compared with results of the AMD
simulations using Gogny interactions with different density dependencies of the
symmetry energy term. The calculated values show a close relation
to the symmetry energy at the density at the time of the fragment formation.
From this relation the density of the fragmenting source is determined to be
. Using this density, the symmetry energy
coefficient and the temperature of fragmenting source are determined in a
self-consistent manner as and
MeV
- …