9 research outputs found

    Antimicrobial and antioxidant linen via laccase-assisted grafting

    Get PDF
    A laccase from Ascomycetemyceliophthora thermophila was used to assist the binding of chitosan and catechin onto a previous enzymatically oxidized linen surface. The process consists of the pre-treatment of the linen with laccase followed by the application of chitosan in a first step and catechin plus laccase in a second step. The results presented here support the conclusion that laccase is able to oxidize phenols naturally existing in flax fibres, and that the o-quinones formed promote the attachment of chitosan or/and catechin. The pre-treatment of linen with laccase is therefore the key factor for the success of catechin and chitosan grafting. A multifunctional linen product with both antioxidant and antibacterial properties was obtained with an acceptable level of durability in terms of end user requirements.Carla Silva would like to acknowledge the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) for funding under the scholarship SFRH/BPD/46515/2008

    Direct enzymatic esterification of cotton and Avicel with wild-type and engineered cutinases

    Get PDF
    In this work, the surface of cellulose, either Avicel or cotton fabric, was modified using cutinases without any previous treatment to swell or to solubilise the polymer. Aiming further improvement of cutinase ester synthase activity on cellulose, an engineered cutinase was investigated. Wild-type cutinase from Fusarium solani and its fusion with the carbohydrate-binding module N1 from Cellulomonas fimi were able to esterify the hydroxyl groups of cellulose with distinct efficiencies depending on the acid substrate/solvent system used, as shown by titration and by ATR-FTIR. The carbonyl stretching peak area increased significantly after enzymatic treatment during 72 h at 30 °C. Cutinase treatment resulted in relative increases of 31 and 9 % when octanoic acid and vegetable oil were used as substrates, respectively. Cutinase-N1 treatment resulted in relative increases of 11 and 29 % in the peak area when octanoic acid and vegetable oil were used as substrates, respectively. The production and application of cutinase fused with the domain N1 as a cellulose ester synthase, here reported for the first time, is therefore an interesting strategy to pursuit.This work was co-funded by the European Social Fund through the management authority POPH and FCT, Postdoctoral fellowship reference: SFRH/BPD/47555/2008. The authors also want to thank Doctor Raul Machado for his valuable help on FTIR spectral data treatment

    Protective Ag :TiO2 thin films for pressure sensors in orthopedic prosthesis: the importance of composition, structural and morphological features on the biological response of the coatings

    Get PDF
    DC reactive magnetron sputtered Ag:TiO2 nanocomposite thin films were developed to be used as protective coatings in pressure sensor devices. The coatings, with Ag content varying from 0 to about 30 at.%, were prepared and characterized in order to study their biological response. The as-deposited samples were annealed in vacuum at 500 °C in order to evaluate the influence of their morphological and structural differences over the response elicited upon contact with simulated bodily fluids and cultured human cells, as well as selected microorganisms. The results showed that the annealing treatment produced less porous films with an enhanced structure, with a significant reduction in structural defects and improved crystallinity. Additionally, samples with higher Ag contents (≥12.8 at.%) exhibited Ag agglomerates/clusters at the surface, a result anticipated from the XRD data. The crystallization of the TiO2 matrix was also observed by XRD analysis, albeit delayed by the dispersion of Ag into the matrix. Biological characterization showed that the antimicrobial activity and cytotoxicity of the coatings were directly related with their composition, closely followed by the particular structural and morphological features, namely those resulting from annealing process.This research is partially sponsored by FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade and by national funds through FCT—Fundação para a Ciência e a Tecnologia, under the projects PEst-C/EME/UI0285/2011, PTDC/SAU-ENB/116850/2010, PTDC/CTM-NAN/112574/2009P. T Matamá acknowledges FCT for Grant SFRH/BPD/47555/2008

    Which properties of cutinases are important for applications?

    No full text
    Cutinases (EC 3.1.1.74) are extracellular enzymes that belong to a/ß hydrolases. They are serine esterases with the classical Ser-His-Asp triad similar to several lipases and serine proteases. In nature, cutinases catalyse the hydrolysis of the polyesters of the cuticle and the suberin layers, which protect plant surfaces. Cutinase production is typical for plant pathogenic fungi, but also, bacterial cutinases and cutinases from plant pollen have been discovered. Cutinases are promiscuous esterases catalysing reactions with a wide range of different substrates, such as short-chain soluble esters, water-insoluble medium and long-chain triacylglycerols, polyesters and waxes. In the current work, an overview is given on suggested applications of cutinases in the textile industry, in laundry detergents, in processing of biomass and food, in biocatalysis and in detoxification of environmental pollutants. The applications are discussed from the point of view of cutinase properties - which properties of cutinases are already advantageous and which would be desired. In addition, improvements that have been made on cutinase performance by protein and reaction engineering are reviewed
    corecore