24 research outputs found

    Chasing Nomadic Worlds: A New Class of Deep Space Missions

    Full text link
    Nomadic worlds, i.e., objects not gravitationally bound to any star(s), are of great interest to planetary science and astrobiology. They have garnered attention recently due to constraints derived from microlensing surveys and the recent discovery of interstellar planetesimals. In this paper, we roughly estimate the prevalence of nomadic worlds with radii of 100kmR104km100\,\mathrm{km} \lesssim R \lesssim 10^4\,\mathrm{km}. The cumulative number density n>(>R)n_>\left(>R\right) appears to follow a heuristic power law given by n>R3n_> \propto R^{-3}. Therefore, smaller objects are probably much more numerous than larger rocky nomadic planets, and statistically more likely to have members relatively close to the inner Solar system. Our results suggest that tens to hundreds of planet-sized nomadic worlds might populate the spherical volume centered on Earth and circumscribed by Proxima Centauri, and may thus comprise closer interstellar targets than any planets bound to stars. For the first time, we systematically analyze the feasibility of exploring these unbounded objects via deep space missions. We investigate what near-future propulsion systems could allow us to reach nomadic worlds of radius >R> R in a 5050-year flight timescale. Objects with R100R \sim 100 km are within the purview of multiple propulsion methods such as electric sails, laser electric propulsion, and solar sails. In contrast, nomadic worlds with R1000R \gtrsim 1000 km are accessible by laser sails (and perhaps nuclear fusion), thereby underscoring their vast potential for deep space exploration.Comment: 22 pages including "Highlights" page; accepted by Acta Astronautic

    Gravitational Radiation and Very Long Baseline Interferometry

    Get PDF
    Gravitational waves affect the observed direction of light from distant sources. At telescopes, this change in direction appears as periodic variations in the apparent positions of these sources on the sky; that is, as proper motion. A wave of a given phase, traveling in a given direction, produces a characteristic pattern of proper motions over the sky. Comparison of observed proper motions with this pattern serves to test for the presence of gravitational waves. A stochastic background of waves induces apparent proper motions with specific statistical properties, and so, may also be sought. In this paper we consider the effects of a cosmological background of gravitational radiation on astrometric observations. We derive an equation for the time delay measured by two antennae observing the same source in an Einstein-de Sitter spacetime containing gravitational radiation. We also show how to obtain similar expressions for curved Friedmann-Robertson-Walker spacetimes.Comment: 31 pages plus 3 separate figures, plain TeX, submitted to Ap

    Swarming Proxima Centauri: Optical Communication Over Interstellar Distances

    Full text link
    Interstellar communications are achievable with gram-scale spacecraft using swarm techniques introduced herein if an adequate energy source, clocks and a suitable communications protocol exist. The essence of our approach to the Breakthrough Starshot challenge is to launch a long string of 100s of gram-scale interstellar probes at 0.2c in a firing campaign up to a year long, maintain continuous contact with them (directly amongst each other and via Earth utilizing the launch laser), and gradually, during the 20-year cruise, dynamically coalesce the long string into a lens-shaped mesh network \sim100,000 km across centered on the target planet Proxima b at the time of fly-by. In-flight formation would be accomplished using the "time on target" technique of grossly modulating the initial launch velocity between the head and the tail of the string, and combined with continual fine control or "velocity on target" by adjusting the attitude of selected probes, exploiting the drag imparted by the ISM. Such a swarm could tolerate significant attrition, e.g., by collisions enroute with interstellar dust grains, thus mitigating the risk that comes with "putting all your eggs in one basket". It would also enable the observation of Proxima b at close range from a multiplicity of viewpoints. Swarm synchronization with state-of-the-art space-rated clocks would enable operational coherence if not actual phase coherence in the swarm optical communications. Betavoltaic technology, which should be commercialized and space-rated in the next decade, can provide an adequate primary energy storage for these swarms. The combination would thus enable data return rates orders of magnitude greater than possible from a single probe.Comment: Submission to the Breakthrough Starshot Challenge Communications Group Final Repor

    Quasar Proper Motions and Low-Frequency Gravitational Waves

    Get PDF
    We report observational upper limits on the mass-energy of the cosmological gravitational-wave background, from limits on proper motions of quasars. Gravitational waves with periods longer than the time span of observations produce a simple pattern of apparent proper motions over the sky, composed primarily of second-order transverse vector spherical harmonics. A fit of such harmonics to measured motions yields a 95%-confidence limit on the mass-energy of gravitational waves with frequencies <2e-9 Hz, of <0.11/h*h times the closure density of the universe.Comment: 15 pages, 1 figure. Also available at http://charm.physics.ucsb.edu:80/people/cgwinn/cgwinn_group/index.htm

    Report of the panel on earth rotation and reference frames, section 7

    Get PDF
    Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth
    corecore