34 research outputs found

    МОДЕЛИ ПРОГНОЗИРОВАНИЯ СПРОСА НА ИННОВАЦИОННУЮ ПРОДУКЦИЮ

    Get PDF
    The importance of innovation nowadays can’t be overestimated. The introduction of innovations in usual life goes through the innovative projects, which are includes the stage of research, development, production and market realization. Like any other commercial project, the innovative project must be cost-effective in the long run to pay off and make a profit. However, the calculation of potential profits from an innovative product or service remains the most unexplored area in the innovative projects assessment. This factor makes the topic of this article particularly urgent. This article examines different approaches to assess the demand for innovation in the evaluation of innovative projects. The article provides arguments in favor of S-form of curve of innovative product adoption. Consistently discusses the stages of the model modification by adding the factors of price, advertising, market potential. Explores the advantages and disadvantages of different methods for determining Bass model parameters. It is concluded that model is practical applicable in the management of innovation projects. Значимость инноваций в современном мире трудно переоценить. Внедрение их в жизнь обычно проходит через инновационные проекты, включающие стадии исследований, разработок, производства и вывода на рынок. Как и любой другой коммерческий проект, инновационный проект должен быть экономически эффективным, в конечном счете окупиться и принести прибыль. Однако расчет потенциальной прибыли от инновационного продукта или услуги остается наиболее не изученной сферой в оценке инновационных проектов. Данный фактор делает особенно актуальной тему статьи, в которой рассматриваются различные подходы к оценке спроса на инновации в рамках оценки инновационных проектов. В статье изучается модель Басса для моделирования и прогнозирования распространения инновационных продуктов, а также процесс развития модели; приводятся аргументы в пользу S-вида кривой накопленного «принятия», т.е. покупки инновационного продукта; автором предлагаются модификации модели с добавлением в нее факторов цены, рекламы, рыночного потенциала; исследуются преимущества и недостатки различных методов определения параметров модели Басса. Делается вывод о практической применимости модели оценки спроса на инновации в оценке инновационных проектов.

    Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band produced during the air-shower development. As shown by Tunka-Rex, a sparse radio array with about 200 m spacing is able to reconstruct the energy and the depth of the shower maximum with satisfactory precision using simple methods based on parameters of the lateral distribution of amplitudes. The LOFAR experiment has shown that a sophisticated treatment of all individually measured amplitudes of a dense antenna array can make the precision comparable with the resolution of existing optical techniques. We develop these ideas further and present a method based on the treatment of time series of measured signals, i.e. each antenna station provides several points (trace) instead of a single one (amplitude or power). We use the measured shower axis and energy as input for CoREAS simulations: for each measured event we simulate a set of air-showers with proton, helium, nitrogen and iron as primary particle (each primary is simulated about ten times to cover fluctuations in the shower maximum due to the first interaction). Simulated radio pulses are processed with the Tunka-Rex detector response and convoluted with the measured signals. A likelihood fit determines how well the simulated event fits to the measured one. The positions of the shower maxima are defined from the distribution of chi-square values of these fits. When using this improved method instead of the standard one, firstly, the shower maximum of more events can be reconstructed, secondly, the resolution is increased. The performance of the method is demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.Comment: Proceedings of the 35th ICRC 2017, Busan, Kore

    Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which measures the radio emission of the cosmic-ray air-showers in the frequency band of 30-80 MHz. Tunka-Rex is co-located with TAIGA experiment in Siberia and consists of 63 antennas, 57 of them are in a densely instrumented area of about 1 km\textsuperscript{2}. In the present work we discuss the improvements of the signal reconstruction applied for the Tunka-Rex. At the first stage we implemented matched filtering using averaged signals as template. The simulation study has shown that matched filtering allows one to decrease the threshold of signal detection and increase its purity. However, the maximum performance of matched filtering is achievable only in case of white noise, while in reality the noise is not fully random due to different reasons. To recognize hidden features of the noise and treat them, we decided to use convolutional neural network with autoencoder architecture. Taking the recorded trace as an input, the autoencoder returns denoised trace, i.e. removes all signal-unrelated amplitudes. We present the comparison between standard method of signal reconstruction, matched filtering and autoencoder, and discuss the prospects of application of neural networks for lowering the threshold of digital antenna arrays for cosmic-ray detection.Comment: ARENA2018 proceeding

    Current Status and New Challenges of The Tunka Radio Extension

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is an antenna array spread over an area of about 1~km2^2. The array is placed at the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) and detects the radio emission of air showers in the band of 30 to 80~MHz. During the last years it was shown that a sparse array such as Tunka-Rex is capable of reconstructing the parameters of the primary particle as accurate as the modern instruments. Based on these results we continue developing our data analysis. Our next goal is the reconstruction of cosmic-ray energy spectrum observed only by a radio instrument. Taking a step towards it, we develop a model of aperture of our instrument and test it against hybrid TAIGA observations and Monte-Carlo simulations. In the present work we give an overview of the current status and results for the last five years of operation of Tunka-Rex and discuss prospects of the cosmic-ray energy estimation with sparse radio arrays.Comment: Proceedings of E+CRS 201

    Latest results of the Tunka Radio Extension (ISVHECRI2016)

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15\% and the depth of the shower maximum with a resolution of better than 40 g/cm\textsuperscript{2}. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.Comment: proceedings of ISVHECRI2016 conferenc

    First analysis of inclined air showers detected by Tunka-Rex

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50^\circ. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers.Comment: ARENA2018 proceeding
    corecore