370 research outputs found

    A millimeter-wave antireflection coating for cryogenic silicon lenses

    Get PDF
    We have developed and tested an antireflection (AR) coating method for silicon lenses at cryogenic temperatures and millimeter wavelengths. Our particular application is a measurement of the cosmic microwave background. The coating consists of machined pieces of Cirlex glued to the silicon. The measured reflection from an AR coated flat piece is less than 1.5% at the design wavelength. The coating has been applied to flats and lenses and has survived multiple thermal cycles from 300 to 4 K. We present the manufacturing method, the material properties, the tests performed, and estimates of the loss that can be achieved in practical lenses

    Cognitive bias and depression in psychiatrically disturbed children and adolescents

    Get PDF
    Developed a cognitive bias questionnaire for children (CBQC) to examine the relation between cognitive distortion and depression in 39 psychiatrically disturbed 8–16 yr olds. Results indicate that the Depressed–Distorted scale from the CBQC was significantly correlated with Ss\u27 psychiatric and self-reported ratings of depression and could significantly discriminate affective from nonaffective disorders

    Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators

    Full text link
    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r=0.01r=0.01. Indeed, r<0.01r<0.01 is achievable with commensurately improved characterizations and controls.Comment: 13 pages, 13 figures, 1 table, matches published versio

    The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    Get PDF
    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM

    Impact of Systematics on SZ-Optical Scaling Relations

    Full text link
    One of the central goals of multi-wavelength galaxy cluster cosmology is to unite all cluster observables to form a consistent understanding of cluster mass. Here, we study the impact of systematic effects from optical cluster catalogs on stacked SZ signals. We show that the optically predicted Y-decrement can vary by as much as 50% based on the current 2 sigma systematic uncertainties in the observed mass-richness relationship. Mis-centering and impurities will suppress the SZ signal compared to expectations for a clean and perfectly centered optical sample, but to a lesser degree. We show that the level of these variations and suppression is dependent on the amount of systematics in the optical cluster catalogs. We also study X-ray luminosity-dependent sub-sampling of the optical catalog and find that it creates Malmquist bias increasing the observed Y-decrement of the stacked signal. We show that the current Planck measurements of the Y-decrement around SDSS optical clusters and their X-ray counterparts are consistent with expectations after accounting for the 1 sigma optical systematic uncertainties using the Johnston mass richness relation.Comment: 6 pages, 4 figures. Revised to match version accepted in the Astrophysical Journa

    Scalable background-limited polarization-sensitive detectors for mm-wave applications

    Full text link
    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.Comment: 7 pages, 3 figures, Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proceedings of SPIE Volume 915
    • …
    corecore