30 research outputs found

    Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The absence of highly sensitive and specific serum biomarkers makes mass screening for ovarian cancer impossible. The claudin proteins are frequently overexpressed in ovarian cancers, but their potential as prognostic, diagnostic, or detection markers remains unclear. Here, we have explored the possible use of these proteins as screening biomarkers for ovarian cancer detection.</p> <p>Methods</p> <p>Claudin protein shedding from cells was examined by immunoblotting of conditioned culture media. The presence of claudins in exosomes released from ovarian cancer cells was demonstrated by sucrose gradient separation and immunogold electron microscopy experiments. Claudin-4-containing exosomes in the plasma of ovarian cancer patients were evaluated in a pilot panel of 63 ovarian cancer patients and 50 healthy volunteers. The CA125 marker was also assessed in these samples and compared with claudin-4 positivity.</p> <p>Results</p> <p>We show that full-length claudins can be shed from ovarian cancer cells in culture and found in the media as part of small lipid vesicles known as exosomes. Moreover, 32 of 63 plasma samples from ovarian cancer patients exhibited the presence of claudin-4-containing exosomes. In contrast, only one of 50 samples from individuals without cancer exhibited claudin-4-positive exosomes. In our small panel, at a specificity of 98%, the claudin-4 and CA125 tests had sensitivities of 51% and 71%, respectively. The two tests did not appear to be independent and were strongly correlated.</p> <p>Conclusion</p> <p>Our work shows for the first time that claudin-4 can be released from ovarian cancer cells and can be detected in the peripheral circulation of ovarian cancer patients. The development of sensitive assays for the detection of claudin-4 in blood will be crucial in determining whether this approach can be useful, alone or in combination with other screening methods, for the detection of ovarian cancer.</p

    Indole -

    No full text

    Organization and Orientation of Amphiphilic Push−Pull Chromophores Deposited in Langmuir−Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy

    No full text
    International audienceOrientation and organization of two amphiphilic push-pull chromophores mixed with two phospholipids (dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine) in Langmuir-Blodgett (LB) monolayers are investigated by second harmonic generation. The LB monolayers have also been characterized by atomic force microscopy and UV-vis spectroscopy. The effective molecular orientations and hyperpolarizabilities of the chromophores are studied as a function of the phospholipid concentrations. The experimental results are discussed within the frame of a model of orientational distribution of the chromophores which gives the orientational mean angle and bounds on the orientational disorder. The mean orientation of the chromophores is found to be within 45-55° whereas their hyperpolarizability coefficients, measured with respect to quartz, are estimated to be in the range (0.3-0.7) × 10 -27 esu taking account of the maximal orientational disorder

    Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation.

    No full text
    Current pharmacological therapies for treating obesity are of limited efficacy. Genetic ablation or loss of function of AMP-activated protein kinase alpha 1 (AMPKα1) in steroidogenic factor 1 (SF1) neurons of the ventromedial nucleus of the hypothalamus (VMH) induces feeding-independent resistance to obesity due to sympathetic activation of brown adipose tissue (BAT) thermogenesis. Here, we show that body weight of obese mice can be reduced by intravenous injection of small extracellular vesicles (sEVs) delivering a plasmid encoding an AMPKα1 dominant negative mutant (AMPKα1-DN) targeted to VMH-SF1 neurons. The beneficial effect of SF1-AMPKα1-DN-loaded sEVs is feeding-independent and involves sympathetic nerve activation and increased UCP1-dependent thermogenesis in BAT. Our results underscore the potential of sEVs to specifically target AMPK in hypothalamic neurons and introduce a broader strategy to manipulate body weight and reduce obesity
    corecore