19 research outputs found

    Brain arteriolosclerosis

    Get PDF
    Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer’s disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g. hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that include consideration of comorbid diseases, B-ASC is independently associated with impairments in global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability

    Application of Classification Association Rule Mining for Mammalian Mesenchymal Stem Cell Differentiation

    No full text
    Abstract. In this paper, data mining is used to analyze the differentiation of mammalian Mesenchymal Stem Cells (MSCs). A database comprising the key parameters which, we believe, influence the destiny of mammalian MSCs has been constructed. This paper introduces Classification Association Rule Mining (CARM) as a data mining technique in the domain of tissue engineering and initiates a new promising research field. The experimental results show that the proposed approach performs well with respect to the accuracy of (classification) prediction. Moreover, it was found that some rules mined from the constructed MSC database are meaningful and useful

    Role of neuroinflammation in neurodegeneration: new insights

    No full text
    Previously, the contribution of peripheral infection to cognitive decline was largely overlooked however, the past 15 years have established a key role for infectious pathogens in the progression of age-related neurodegeneration. It is now accepted that the immune privilege of the brain is not absolute, and that cells of the central nervous system are sensitive to both the inflammatory events occurring in the periphery and to the infiltration of peripheral immune cells. This is particularly relevant for the progression of Alzheimer’s disease, in which it has been demonstrated that patients are more vulnerable to infection-related cognitive changes. This can occur from typical infectious challenges such as respiratory tract infections, although a number of specific viral, bacterial, and fungal pathogens have also been associated with the development of the disease. To date, it is not clear whether these microorganisms are directly related to Alzheimer’s disease progression or if they are opportune pathogens that easily colonize those with dementia and exacerbate the ongoing inflammation observed in these individuals. This review will discuss the impact of each of these challenges, and examine the changes known to occur with age in the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive decline

    The Role of Macrophage Migration Inhibitory Factor in Alzheimer’s Disease

    No full text
    Previous studies have shown that amyloid β protein (Aβ ), the essential molecule for the formation of toxic oligomers and, subsequently, Alzheimer plaques, has been associated in vivo with the immune modulator, macrophage migration inhibitory factor (MIF) (17). To further investigate this association in vivo we used the APP transgenic mouse model. Serial brain sections of transgenic APP mice were stained for Aβ plaques and MIF and we observed MIF immunolabeling in microglial cells in association with Aβ plaques in the transgenic mouse brain sections. In addition, functional studies in murine and human neuronal cell lines revealed that Aβ-induced toxicity could be reversed significantly by a small molecule inhibitor of MIF (ISO-1). Finally, to elucidate the role of MIF in Alzheimer’s Disease (AD) we measured MIF levels in the brain cytosol and cerebrospinal fluid (CSF) of AD patients and age-matched controls. Our results demonstrate a marked increase of MIF levels within the CSF of AD patients compared with controls. Combined, our results indicate a strong role for MIF in the pathogenesis of AD and furthermore suggest that inhibition of MIF may provide a valuable avenue of investigation for the prevention of disease onset, progression and/or severity
    corecore