35,818 research outputs found

    Effect of a Spin-1/2 Impurity on the Spin-1 Antiferromagnetic Heisenberg Chain

    Full text link
    Low-lying excited states as well as the ground state of the spin-1 antiferro- magnetic Heisenberg chain with a spin-1/2 impurity are investigated by means of a variational method and a method of numerical diagonalization. It is shown that 1) the impurity spin brings about massive modes in the Haldane gap, 2) when the the impurity-host coupling is sufficiently weak, the phenomenological Hamiltonian used by Hagiwara {\it et al.} in the analysis of ESR experimental results for NENP containing a small amount of spin-1/2 Cu impurities is equivalent to a more realistic Hamiltonian, as far as the energies of the low-lying states are concerned, 3) the results obtained by the variational method are in semi-quantitatively good agreement with those obtained by the numerical diagonalization.Comment: 11 pages, plain TeX (Postscript figures are included), KU-CCS-93-00

    Report on the development of the Manned Orbital Research Laboratory /MORL/ system utilization potential. Task area IV - MORL SYSTEM improvement study, book 2

    Get PDF
    Environmental control and life support systems analyses for improved Manned Orbital Research Laborator

    Analytic Relations between Localizable Entanglement and String Correlations in Spin Systems

    Full text link
    We study the relation between the recently defined localizable entanglement and generalized correlations in quantum spin systems. Differently from the current belief, the localizable entanglement is always given by the average of a generalized string. Using symmetry arguments we show that in most spin 1/2 and spin 1 systems the localizable entanglement reduces to the spin-spin or string correlations, respectively. We prove that a general class of spin 1 systems, which includes the Heisenberg model, can be used as perfect quantum channel. These conclusions are obtained in analytic form and confirm some results found previously on numerical grounds.Comment: 5 pages, RevTeX

    The Length of an SLE - Monte Carlo Studies

    Full text link
    The scaling limits of a variety of critical two-dimensional lattice models are equal to the Schramm-Loewner evolution (SLE) for a suitable value of the parameter kappa. These lattice models have a natural parametrization of their random curves given by the length of the curve. This parametrization (with suitable scaling) should provide a natural parametrization for the curves in the scaling limit. We conjecture that this parametrization is also given by a type of fractal variation along the curve, and present Monte Carlo simulations to support this conjecture. Then we show by simulations that if this fractal variation is used to parametrize the SLE, then the parametrized curves have the same distribution as the curves in the scaling limit of the lattice models with their natural parametrization.Comment: 18 pages, 10 figures. Version 2 replaced the use of "nu" for the "growth exponent" by 1/d_H, where d_H is the Hausdorff dimension. Various minor errors were also correcte

    Energy Versus Magnetic-Field Diagram of the Spin-1 Haldane System with an Impurity

    Full text link
    Energy versus magnetic-field diagram of the spin-11 Haldane system with an impurity bond is studied in terms of spin-1/2 degree of freedom at the sites neighboring the impurity bond by means of analytical method. We examine the equivalence between the realistic Hamiltonian and the phenomenological Hamiltonian which is composed two spin-1/2 spins representing the spin-1/2 degree of freedom. It is proved that when the strength of the impurity bond is sufficiently weak, the two Hamiltonians are equivalent to each other, as far as the energies of the low-lying states are concerned. We determine the correspondence between the interaction constants in the phenomenological Hamiltonian and those in the realistic Hamiltonian.Comment: 10 pages, plain TeX (Postscript figures are included), KU-CCS-93-00

    Evaluation of materials and design modifications for aircraft brakes

    Get PDF
    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities

    Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    Get PDF
    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing

    Dephasing dynamics of Rydberg atom spin waves

    Full text link
    A theory of Rydberg atom interactions is used to derive analytical forms for the spin wave pair correlation function in laser-excited cold-atom vapors. This function controls the quantum statistics of light emission from dense, inhomogeneous clouds of cold atoms of various spatial dimensionalities. The results yield distinctive scaling behaviors on the microsecond timescale, including generalized exponential decay. A detailed comparison is presented with a recent experiment on a cigar-shaped atomic ensemble [Y. Dudin and A. Kuzmich, Science 336, 887 (2012)], in which Rb atoms are excited to a set of Rydberg levels.Comment: 4 pages, Supplemental Material in Appendix, 4 figure

    Making the small oblique parameters large

    Full text link
    We compute the oblique parameters, including the three new parameters V V , W W and X X introduced recently by the Montreal group, for the case of one scalar multiplet of arbitrary weak isospin J J and weak hypercharge Y Y . We show that, when the masses of the heaviest and lightest components of the multiplet remain constant, but J J increases, the oblique parameter U U and the three new oblique parameters increase like J3 J^3 , while T T only increases like J J . For large multiplets with masses not much higher than mZ m_Z , the oblique parameters U U and V V may become much larger than T T and S S .Comment: 9 pages, standard LATEX, 3 figures available from the authors, report CMU-HEP93-17 and DOE-ER/40682-4

    Planet formation around stars of various masses: The snow line and the frequency of giant planets

    Full text link
    We use a semi-analytic circumstellar disk model that considers movement of the snow line through evolution of accretion and the central star to investigate how gas giant frequency changes with stellar mass. The snow line distance changes weakly with stellar mass; thus giant planets form over a wide range of spectral types. The probability that a given star has at least one gas giant increases linearly with stellar mass from 0.4 M_sun to 3 M_sun. Stars more massive than 3 M_sun evolve quickly to the main-sequence, which pushes the snow line to 10-15 AU before protoplanets form and limits the range of disk masses that form giant planet cores. If the frequency of gas giants around solar-mass stars is 6%, we predict occurrence rates of 1% for 0.4 M_sun stars and 10% for 1.5 M_sun stars. This result is largely insensitive to our assumed model parameters. Finally, the movement of the snow line as stars >2.5 M_sun move to the main-sequence may allow the ocean planets suggested by Leger et. al. to form without migration.Comment: Accepted to ApJ. 12 pages of emulateap
    corecore