9,404 research outputs found
Trailing Edge Noise Reduction by Passive and Active Flow Controls
This paper presents the results on the use of porous metal foams (passive control) and dielectric barrier surface plasma actuations (active control) for the reduction of vortex shedding tonal noises from the nonflat plate type trailing edge serration in a NACA0012 airfoil previously discussed in Chong et al. (AIAA J. Vol. 51, 2013, pp. 2665-2677). The use of porous metal foams to fill the interstices between adjacent members of the sawtooth can almost completely suppress the vortex shedding tonal noise, whilst the serration effect on the broadband noise reduction is retained. This concept will promote the nonflat plate type serrated trailing edge to become a genuine alternative to the conventional flat plate type serrated trailing edge, which is known to have drawbacks in the structural stability, aerodynamic performances and implementation issues. For the plasma actuators, configuration which produces electric wind in a tangential direction is found to be not very effective in suppressing the vortices emanated from the serration blunt root. On the other hand, for the plasma configuration which produces electric wind in a vertical direction, good level of vortex shedding tonal noise reduction has been demonstrated. However, the self noise produced by the plasma actuators negates the noise benefits on the tonal noise reduction. This characteristic illustrates the need to further develop the plasma actuators in a two pronged approach. First is to increase the electric wind speed, thereby allowing the plasma actuators to be used in a higher free jet velocity which naturally produces a larger level of jet noise. Second, the self noise radiated by the plasma actuators should be reduced
-approximation of the integrated density of states for Schr\"odinger operators with finite local complexity
We study spectral properties of Schr\"odinger operators on \RR^d. The
electromagnetic potential is assumed to be determined locally by a colouring of
the lattice points in \ZZ^d, with the property that frequencies of finite
patterns are well defined. We prove that the integrated density of states
(spectral distribution function) is approximated by its finite volume
analogues, i.e.the normalised eigenvalue counting functions. The convergence
holds in the space where is any finite energy interval and is arbitrary.Comment: 15 pages; v2 has minor fixe
Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2
Placozoa is an enigmatic phylum of simple, microscopic, marine metazoans(1,2). Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host(3-6). We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp. H2 lives in symbiosis with two intracellular bacteria. One symbiont forms an undescribed genus in the Midichloriaceae (Rickettsiales)(7,8) and has a genomic repertoire similar to that of rickettsial parasites(9,10), but does not seem to express key genes for energy parasitism. Correlative image analyses and three-dimensional electron tomography revealed that this symbiont resides in the rough endoplasmic reticulum of its host's internal fibre cells. The second symbiont belongs to the Margulisbacteria, a phylum without cultured representatives and not known to form intracellular associations(11-13). This symbiont lives in the ventral epithelial cells of Trichoplax, probably metabolizes algal lipids digested by its host and has the capacity to supplement the placozoan's nutrition. Our study shows that one of the simplest animals has evolved highly specific and intimate associations with symbiotic, intracellular bacteria and highlights that symbioses can provide access to otherwise elusive microbial dark matter
Design of a low-noise aeroacoustic wind tunnel facility at Brunel University
This paper represents the design principle of a quiet, low turbulence and moderately high speed aeroacoustic wind tunnel which was recently commissioned at Brunel University. A new hemi-anechoic chamber was purposely built to facilitate aeroacoustic measurements. The wind tunnel can achieve a maximum speed of about 80 ms-1. The turbulence intensity of the free jet in the potential core is between 0.1–0.2%. The noise characteristic of the aeroacoustic wind tunnel was validated by three case studies. All of which can demonstrate a very low background noise produced by the bare jet in comparison to the noise radiated from the cylinder rod/flat plate/airfoil in the air stream.The constructions of the aeroacoustic wind tunnel and the hemi-anechoic chamber are financially supported by the School of Engineering and Design at Brunel University
Integration and Application of Optical Chemical Sensors in Microbioreactors
The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, for example, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased alongside other optical detection methods, such as Raman and surface plasmon resonance. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available
Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO interface
SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have
gained a significant importance in power electronics applications. However,
electrically active defects at the SiC/SiO interface degrade the ideal
behavior of the devices. The relevant microscopic defects can be identified by
electron paramagnetic resonance (EPR) or electrically detected magnetic
resonance (EDMR). This helps to decide which changes to the fabrication process
will likely lead to further increases of device performance and reliability.
EDMR measurements have shown very similar dominant hyperfine (HF) spectra in
differently processed MOSFETs although some discrepancies were observed in the
measured -factors. Here, the HF spectra measured of different SiC MOSFETs
are compared and it is argued that the same dominant defect is present in all
devices. A comparison of the data with simulated spectra of the C dangling bond
(P) center and the silicon vacancy (V) demonstrates
that the P center is a more suitable candidate to explain the
observed HF spectra.Comment: Accepted for publication in the Journal of Applied Physic
On the Second Law of thermodynamics and the piston problem
The piston problem is investigated in the case where the length of the
cylinder is infinite (on both sides) and the ratio is a very small
parameter, where is the mass of one particle of the gaz and is the mass
of the piston. Introducing initial conditions such that the stochastic motion
of the piston remains in the average at the origin (no drift), it is shown that
the time evolution of the fluids, analytically derived from Liouville equation,
agrees with the Second Law of thermodynamics.
We thus have a non equilibrium microscopical model whose evolution can be
explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics
(2003
- …