95 research outputs found

    The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone

    Get PDF
    The load-transfer pathway in trabecular bone is largely determined by its architecture. However, the influence of variations in mineralization is not known. The goal of this study was to examine the influence of inhomogeneously distributed degrees of mineralization (DMB) on intratrabecular stresses and strains. Cubic mandibular condylar bone specimens from fetal and newborn pigs were used. Finite element models were constructed, in which the element tissue moduli were scaled to the local DMB. Disregarding the observed distribution of mineralization was associated with an overestimation of average equivalent strain and underestimation of von Mises equivalent stress. From the surface of trabecular elements towards their core the strain decreased irrespective of tissue stiffness distribution. This indicates that the trabecular elements were bent during the compression experiment. Inhomogeneously distributed tissue stiffness resulted in a low stress at the surface that increased towards the core. In contrast, disregarding this tissue stiffness distribution resulted in high stress at the surface which decreased towards the core. It was concluded that the increased DMB, together with concurring alterations in architecture, during development leads to a structure which is able to resist increasing loads without an increase in average deformation, which may lead to damage

    The NTI-tss device for the therapy of bruxism, temporomandibular disorders, and headache – Where do we stand? A qualitative systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NTI-tss device is an anterior bite stop, which, according to the manufacturer, is indicated for the prevention and treatment of bruxism, temporomandibular disorders (TMDs), tension-type headaches, and migraine. The aim of this systematic review was to appraise the currently available evidence regarding the efficacy and safety of the NTI-tss splint.</p> <p>Methods</p> <p>We performed a systematic search in nine electronic databases and in NTI-tss-associated websites (last update: December 31, 2007). The reference lists of all relevant articles were perused. Five levels of scientific quality were distinguished. Reporting quality of articles about randomized controlled trials (RCTs) was evaluated using the Jadad score. To identify adverse events, we searched in the identified publications and in the MAUDE database.</p> <p>Results</p> <p>Nine of 68 relevant publications reported about the results of five different RCTs. Two RCTs concentrated on electromyographic (EMG) investigations in patients with TMDs and concomitant bruxism (Baad-Hansen et al 2007, Jadad score: 4) or with bruxism alone (Kavaklı 2006, Jadad score: 2); in both studies, compared to an occlusal stabilization splint the NTI-tss device showed significant reduction of EMG activity. Two RCTs focused exclusively on TMD patients; in one trial (Magnusson et al 2004, Jadad score: 3), a stabilization appliance led to greater improvement than an NTI-tss device, while in the other study (Jokstad et al 2005, Jadad score: 5) no difference was found. In one RCT (Shankland 2002, Jadad score: 1), patients with tension-type headache or migraine responded more favorably to the NTI-tss splint than to a bleaching tray. NTI-tss-induced complications related predominantly to single teeth or to the occlusion.</p> <p>Conclusion</p> <p>Evidence from RCTs suggests that the NTI-tss device may be successfully used for the management of bruxism and TMDs. However, to avoid potential unwanted effects, it should be chosen only if certain a patient will be compliant with follow-up appointments. The NTI-tss bite splint may be justified when a reduction of jaw closer muscle activity (e.g., jaw clenching or tooth grinding) is desired, or as an emergency device in patients with acute temporomandibular pain and, possibly, restricted jaw opening.</p

    Effects of barefoot and shod running on lower extremity joint loading, a musculoskeletal simulation study

    Get PDF
    PURPOSE: The aim of the current investigation was to utilize a musculoskeletal simulation based approach, to examine the effects of barefoot and shod running on lower extremity joint loading during the stance phase. METHODS: Twelve male runners, ran over an embedded force plate at 4.0 m/s, in both barefoot and shod conditions. Kinematics of the lower extremities were collected using an eight camera motion capture system. Lower extremity joint loading was also explored using a musculoskeletal simulation and mathematical modelling approach, and differences between footwear conditions were examined using paired samples t-tests. RESULTS: Peak Achilles tendon force was significantly larger (P=0.039) when running barefoot (6.85 BW) compared to shod (6.07 BW). In addition, both medial (P=0.013) and lateral (P=0.007) tibiofemoral instantaneous load rates were significantly larger in the barefoot (medial = 289.17 BW/s & lateral = 179.59 BW/s) in relation to the shod (medial = 167.57 BW/s & lateral = 116.40 BW/s) condition. Finally, the barefoot condition (9.70 BW) was associated with a significantly larger (P=0.037) peak hip force compared to running shod (8.51 BW). CONCLUSIONS: The current investigation indicates that running barefoot may place runners at increased risk from the biomechanical factors linked to the aetiology of chronic lower extremity pathologies. However, future analyses using habitual barefoot runners, are required before more definitive affirmations regarding injury predisposition can be made

    A Call to Action for Bioengineers and Dental Professionals: Directives for the Future of TMJ Bioengineering

    Full text link

    A Systematic Review of the Literature on Parenting of Young Children with Visual Impairments and the Adaptions for Video-Feedback Intervention to Promote Positive Parenting (VIPP)

    Full text link

    The curve of Spee in relation to morphology - A stepwise multiple regression analysis.

    No full text

    Porosity of human mandibular condylar bone

    No full text
    Quantification of porosity and degree of mineralization of bone facilitates a better understanding of the possible effects of adaptive bone remodelling and the possible consequences for its mechanical properties. The present study set out first to give a three-dimensional description of the cortical canalicular network in the human mandibular condyle, in order to obtain more information about the principal directions of stresses and strains during loading. Our second aim was to determine whether the amount of remodelling was larger in the trabecular bone than in cortical bone of the condyle and to establish whether the variation in the amount of remodelling was related to the surface area of the cortical canals and trabeculae. We hypothesized that there were differences in porosity and orientation of cortical canals between various cortical regions. In addition, as greater cortical and trabecular porosities are likely to coincide with a greater surface area of cortical canals and trabeculae available for osteoblastic and osteoclastic activity, we hypothesized that this surface area would be inversely proportional to the degree of mineralization of cortical and trabecular bone, respectively. Micro-computed tomography was used to quantify porosity and mineralization in cortical and trabecular bone of ten human mandibular condyles. The cortical canals in the subchondral cortex of the condyle were orientated in the mediolateral direction, and in the anterior and posterior cortex in the superoinferior direction. Cortical porosity (average 3.5%) did not differ significantly between the cortical regions. It correlated significantly with the diameter and number of cortical canals, but not with cortical degree of mineralization. In trabecular bone (average porosity 79.3%) there was a significant negative correlation between surface area of the trabeculae and degree of mineralization; such a correlation was not found between the surface area of the cortical canals and the degree of mineralization of cortical bone. No relationship between trabecular and cortical porosity, nor between trabecular degree of mineralization and cortical degree of mineralization was found, suggesting that adaptive remodelling is independent and different between trabecular and cortical bone. We conclude (1) that the principal directions of stresses and strains are presumably directed mediolaterally in the subchondral cortex and superoinferiorly in the anterior and posterior cortex, (2) that the amount of remodelling is larger in the trabecular than in the cortical bone of the mandibular condyle; in trabecular bone variation in the amount of remodelling is related to the available surface area of the trabeculae

    Postnatal development of fiber type composition in rabbit jaw and leg muscles

    No full text
    We examined the difference in fiber type composition and cross-sectional areas during postnatal development in male rabbit jaw muscles and compared these with changes in leg muscles. The myosin heavy chain (MyHC) content of the fibers was determined by immunohistochemistry. No fiber type difference was found between the jaw muscles in 20-week-old rabbits. However, the way this adult fiber type composition was reached differed between the muscles. The deep temporalis, medial pterygoid, and superficial masseter displayed an increase in alpha fibers during early and a decrease during late postnatal development. Other jaw muscles displayed an increase in alpha fibers during early development only. In contrast, alpha fibers were not found in the soleus, in which fiber type changes were completed at week 4. The gastrocnemius muscle did not change its fiber type composition. Initially, fibers in jaw-opening muscles had larger cross-sectional areas than in other muscles, but they increased less during development. Although there were no large differences in the fiber type composition of muscles in young adult rabbits, large differences were found in the jaw muscles, but not in the leg muscles, during development. In part, these developmental changes in fiber percentages within the jaw muscles can be explained by functional modifications in this muscle group. In the present study, the deep temporalis, medial pterygoid, and superficial masseter showed the most dramatic percent changes in fibers during postnatal development
    • …
    corecore