4,719 research outputs found

    Representations and Properties of Generalized ArA_r Statistics

    Full text link
    A generalization of ArA_r statistics is proposed and developed. The generalized ArA_r quantum statistics is completely specified by a set of Jacobson generators satisfying a set of triple algebraic relations. Fock-Hilbert representations and Bargmann-Fock realizations are derived.Comment: 12 pages, to appear in IJMPA (2006

    Mass as a Relativistic Quantum Observable

    Full text link
    A field state containing photons propagating in different directions has a non vanishing mass which is a quantum observable. We interpret the shift of this mass under transformations to accelerated frames as defining space-time observables canonically conjugated to energy-momentum observables. Shifts of quantum observables differ from the predictions of classical relativity theory in the presence of a non vanishing spin. In particular, quantum redshift of energy-momentum is affected by spin. Shifts of position and energy-momentum observables however obey simple universal rules derived from invariance of canonical commutators.Comment: 5 pages, revised versio

    Arbitrary Rotation Invariant Random Matrix Ensembles and Supersymmetry

    Full text link
    We generalize the supersymmetry method in Random Matrix Theory to arbitrary rotation invariant ensembles. Our exact approach further extends a previous contribution in which we constructed a supersymmetric representation for the class of norm-dependent Random Matrix Ensembles. Here, we derive a supersymmetric formulation under very general circumstances. A projector is identified that provides the mapping of the probability density from ordinary to superspace. Furthermore, it is demonstrated that setting up the theory in Fourier superspace has considerable advantages. General and exact expressions for the correlation functions are given. We also show how the use of hyperbolic symmetry can be circumvented in the present context in which the non-linear sigma model is not used. We construct exact supersymmetric integral representations of the correlation functions for arbitrary positions of the imaginary increments in the Green functions.Comment: 36 page

    Vacuum fluctuations, accelerated motion and conformal frames

    Get PDF
    Radiation from a mirror moving in vacuum electromagnetic fields is shown to vanish in the case of a uniformly accelerated motion. Such motions are related to conformal coordinate transformations, which preserve correlation functions characteristic of vacuum fluctuations. As a result, vacuum fluctuations remain invariant under reflection upon a uniformly accelerated mirror, which therefore does not radiate and experiences no radiation reaction force. Mechanical effects of vacuum fluctuations thus exhibit an invariance with respect to uniformly accelerated motions.Comment: 7 page

    Evaluation of a Tetracycline-Inducible Promoter in Staphylococcus aureus In Vitro and In Vivo and Its Application in Demonstrating the Role of sigB in Microcolony Formation

    Get PDF
    An inducible promoter system provides a powerful tool for studying the genetic basis for virulence. A variety of inducible systems have been used in other organisms, including pXyl-xylR-inducible promoter, the pSpac-lacI system, and the arabinose-inducible PBAD promoter, but each of these systems has limitations in its application to Staphylococcus aureus. In this study, we demonstrated the efficacy of a tetracycline-inducible promoter system in inducing gene expression in S. aureus in vitro and inside epithelial cells as well as in an animal model of infection. Using the xyl/tetO promoter::gfpuvr fusion carried on a shuttle plasmid, we demonstrated that dose-dependant tetracycline induction, as measured by bacterial fluorescence, occurred in each of the above environments while basal activation under noninduced conditions remained low. To ascertain how the system can be used to elucidate the genetic basis of a pathogenic phenotype, we cloned the sigB gene downstream of the inducible promoter. Induction of SigB expression led to dose-dependent attachment of the tested strain to polystyrene microtiter wells. Additionally, bacterial microcolony formation, an event preceding mature biofilm formation, also increased with tetracycline induction of SigB

    Indirect RKKY interaction in any dimensionality

    Full text link
    We present an analytical method which enables one to find the exact spatial dependence of the indirect RKKY interaction between the localized moments via the conduction electrons for the arbitrary dimensionality nn. The corresponding momentum dependence of the Lindhard function is exactly found for any nn as well. Demonstrating the capability of the method we find the RKKY interaction in a system of metallic layers weakly hybridized to each other. Along with usual 2kF2k_F in-plane oscillations the RKKY interaction has the sign-reversal character in a direction perpendicular to layers, thus favoring the antiferromagnetic type of layers' stacking.Comment: 3 pages, REVTEX, accepted to Phys.Rev.

    Closed form representation for a projection onto infinitely dimensional subspace spanned by Coulomb bound states

    Get PDF
    The closed form integral representation for the projection onto the subspace spanned by bound states of the two-body Coulomb Hamiltonian is obtained. The projection operator onto the n2n^2 dimensional subspace corresponding to the nn-th eigenvalue in the Coulomb discrete spectrum is also represented as the combination of Laguerre polynomials of nn-th and (n1)(n-1)-th order. The latter allows us to derive an analog of the Christoffel-Darboux summation formula for the Laguerre polynomials. The representations obtained are believed to be helpful in solving the breakup problem in a system of three charged particles where the correct treatment of infinitely many bound states in two body subsystems is one of the most difficult technical problems.Comment: 7 page

    The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing

    Get PDF
    Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted micro wires the three-dimensional wires that push directly on a micro-fabricated chip, making electrical contact. A small wire cross section (~1 mmm), nearly non-magnetic components, and functionality at low temperatures make the quantum socket ideal to operate solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from DC to 8 GHz, with a contact resistance of ~150 mohm, an impedance mismatch of ~10 ohm, and minimal crosstalk. As a proof of principle, we fabricated and used a quantum socket to measure superconducting resonators at a temperature of ~10 mK.Comment: Main: 31 pages, 19 figs., 8 tables, 8 apps.; suppl.: 4 pages, 5 figs. (HiRes figs. and movies on request). Submitte
    corecore