30,043 research outputs found

    A computer program for anisotropic shallow-shell finite elements using symbolic integration

    Get PDF
    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language

    The Reionization History and Early Metal Enrichment inferred from the Gamma-Ray Burst Rate

    Get PDF
    Based on the gamma-ray burst (GRB) event rate at redshifts of 4z124 \leq z \leq 12, which is assessed by the spectral peak energy-to-luminosity relation recently found by Yonetoku et al., we observationally derive the star formation rate (SFR) for Pop III stars in a high redshift universe. As a result, we find that Pop III stars could form continuously at 4z124 \leq z \leq 12. Using the derived Pop III SFR, we attempt to estimate the ultraviolet (UV) photon emission rate at 7z127 \leq z \leq 12 in which redshift range no observational information has been hitherto obtained on ionizing radiation intensity. We find that the UV emissivity at 7z127 \leq z \leq 12 can make a noticeable contribution to the early reionization. The maximal emissivity is higher than the level required to keep ionizing the intergalactic matter at 7z127 \leq z \leq 12. However, if the escape fraction of ionizing photons from Pop III objects is smaller than 10%, then the IGM can be neutralized at some redshift, which may lead to the double reionization. As for the enrichment, the ejection of all metals synthesized in Pop III objects is marginally consistent with the IGM metallicity, although the confinement of metals in Pop III objects can reduce the enrichment significantly.Comment: 12 pages, 2 figures, ApJL accepte

    Suppression of Dephasing of Optically Trapped Atoms

    Full text link
    Ultra-cold atoms trapped in an optical dipole trap and prepared in a coherent superposition of their hyperfine ground states, decohere as they interact with their environment. We demonstrate than the loss in coherence in an "echo" experiment, which is caused by mechanisms such as Rayleigh scattering, can be suppressed by the use of a new pulse sequence. We also show that the coherence time is then limited by mixing to other vibrational levels in the trap and by the finite lifetime of the internal quantum states of the atoms

    Raising the critical temperature by disorder in unconventional superconductors mediated by spin fluctuations

    Full text link
    We propose a mechanism whereby disorder can enhance the transition temperature Tc of an unconventional superconductor with pairing driven by exchange of spin fluctuations. The theory is based on a self-consistent real space treatment of pairing in the disordered one-band Hubbard model. It has been demonstrated before that impurities can enhance pairing by softening the spin fluctuations locally; here, we consider the competing effect of pair-breaking by the screened Coulomb potential also present. We show that, depending on the impurity potential strength and proximity to magnetic order, this mechanism results in a weakening of the disorder-dependent Tc-suppression rate expected from Abrikosov-Gor'kov theory, or even in disorder-generated Tc enhancements.Comment: 6 pages, 4 figures + Supplementary Materia

    Time-Dependent Random Walks and the Theory of Complex Adaptive Systems

    Full text link
    Motivated by novel results in the theory of complex adaptive systems, we analyze the dynamics of random walks in which the jumping probabilities are {\it time-dependent}. We determine the survival probability in the presence of an absorbing boundary. For an unbiased walk the survival probability is maximized in the case of large temporal oscillations in the jumping probabilities. On the other hand, a random walker who is drifted towards the absorbing boundary performs best with a constant jumping probability. We use the results to reveal the underlying dynamics responsible for the phenomenon of self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure

    Spin susceptibility of underdoped cuprates: the case of Ortho-II YBa_2Cu_3O_{6.5}

    Full text link
    Recent inelastic neutron scattering measurements found that the spin susceptibility of detwinned and highly ordered ortho-II YBa_2Cu_3O_{6.5} exhibits, in both the normal and superconducting states, one-dimensional incommensurate modulations at low energies which were interpreted as a signature of dynamic stripes. We propose an alternative model based on quasiparticle transitions between the arcs of a truncated Fermi surface. Such transitions are resonantly enhanced by scattering to the triplet spin resonance. We show that the anisotropy in the experimental spin response is consistent with this model if the gap at the saddle points is anisotropic.Comment: 5 fives, 3 postscript figure

    Accuracy control in ultra-large-scale electronic structure calculation

    Full text link
    Numerical aspects are investigated in ultra-large-scale electronic structure calculation. Accuracy control methods in process (molecular-dynamics) calculation are focused. Flexible control methods are proposed so as to control variational freedoms, automatically at each time step, within the framework of generalized Wannier state theory. The method is demonstrated in silicon cleavage simulation with 10^2-10^5 atoms. The idea is of general importance among process calculations and is also used in Krylov subspace theory, another large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Anisotropy study of multiferroicity in the pyroxene NaFeGe2_2O6_6

    Full text link
    We present a study of the anisotropy of the dielectric, magnetic and magnetoelastic properties of the multiferroic clinopyroxene NaFeGe2_2O6_6. Pyroelectric currents, dielectric constants and magnetic susceptibilities as well as the thermal expansion and the magnetostriction were examined on large synthetic single crystals of NaFeGe2_2O6_6. The spontaneous electric polarization detected below TC11.6T_{\rm C}\simeq 11.6 K in an antiferromagnetically ordered state (TN13T_{\rm N}\simeq 13 K) is mainly lying within the acac plane with a small component along bb, indicating a triclinic symmetry of the multiferroic phase of NaFeGe2_2O6_6. The electric polarization can be strongly modified by applying magnetic fields along different directions. We derive detailed magnetic-field versus temperature phase diagrams and identify three multiferroic low-temperature phases, which are separated by a non-ferroelectric, antiferromagnetically ordered state from the paramagnetic high-temperature phase.Comment: 14 pages, 8 figures. (minor modifications and corrections of the text

    Electronic Structure of Ladder Cuprates

    Full text link
    We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotropy between the t_perp t_par intra-ladder hopping and small inter-ladder hopping. A downfolding method shows that this anisotropy arises from the ladder structure.The conductivity perpendicular to the ladders is computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure
    corecore