14 research outputs found

    PVP-Vol. 476, Experience With Creep-Strength Enhanced Ferritic Steels and New and Emerging Computational Methods PVP2004-2582 APPLICATION OF AN IMPLICIT REDUNDANT GENETIC ALGORITHM FOR STRUCTURAL DAMAGE IDENTIFICATION OF FLEXIBLE STRUCTURES

    No full text
    ABSTRACT Detecting structural damage is critical in assessing current condition, calculating remaining life, and developing rehabilitation strategies for existing structures. Many structural damage identification methods (SDIM) use vibration data to localize and identify deterioration of structural members. Due to practical constraints, such as cost, number of input channels of the measuring device, or lack of access to parts of the structure, the actual number of sensors used to collect measurement data is much smaller then the number of possible sensor locations. Therefore, the inverse problem associated with structural damage identification is ill formulated and often difficult to solve explicitly. This research addresses the problem of structural damage detection using the linear vibration information contained in frequency response functions (FRF). A structural damage identification method (SDIM) is proposed, which minimizes the error between the analytically computed and measured vibration signatures of structures. The SDIM is formulated as an unconstrained optimization problem, which is solved using genetic algorithms (GA). The implicit redundant representation (IRR) of genes allows the formulation of unstructured optimization problems in which the number of unknown variables is indefinite. The IRR GA efficiently exploits the unstructured nature of structural damage detection by allowing the number of assumed damaged elements to change throughout the optimization. The accuracy and efficiency of SDIM is increased when the IRR GA is used instead of the simple fixed representation GA. The procedure is applied to flexible structures to show that the proposed SDIM is capable of identifying damages in structures often used in the nuclear industry. Noisy measurements are also considered in the simulations to investigate their effect on the proposed SDIM accuracy. Test case results using different measurement noise levels show that the IRR GA has superior performance over the standard fixed representation GA in correctly identifying both the location and extent of damages. INTRODUCTION The goal of structural damage identification methods (SDIM) is to accurately assess the condition of structures and facilitate decision-making related to structural rehabilitation and maintenance, which could significantly increase performance and service-life while reducing cost. Pioneering research in the field of damage detection started in the 1970s, with the realization that mere visual inspection of fatigue prone structures is not sufficient in maintaining the reliability of aircraft structures and steel bridges Although in the last decade research focusing on procedures using modal information has received significant attentio

    Welded Stiffened Cylindrical and Conical Shells

    No full text

    Tubular Structures

    No full text

    Fire Resistant Design

    No full text

    Stiffened Plates

    No full text

    References

    No full text

    Seismic Resistant Design

    No full text

    Frames

    No full text
    corecore