2 research outputs found

    Critical Rotation of an Annular Superfluid Bose Gas

    Full text link
    We analyze the excitation spectrum of a superfluid Bose-Einstein condensate rotating in a ring trap. We identify two important branches of the spectrum related to outer and inner edge surface modes that lead to the instability of the superfluid. Depending on the initial circulation of the annular condensate, either the outer or the inner modes become first unstable. This instability is crucially related to the superfluid nature of the rotating gas. In particular we point out the existence of a maximal circulation above which the superflow decays spontaneously, which cannot be explained by invoking the average speed of sound.Comment: 5 pages, 5 figures, PRA Rapid Com

    Rubidium-87 Bose-Einstein condensate in an optically plugged quadrupole trap

    Full text link
    We describe an experiment to produce 87Rb Bose-Einstein condensates in an optically plugged magnetic quadrupole trap, using a blue-detuned laser. Due to the large detuning of the plug laser with respect to the atomic transition, the evaporation has to be carefully optimized in order to efficiently overcome the Majorana losses. We provide a complete theoretical and experimental study of the trapping potential at low temperatures and show that this simple model describes well our data. In particular we demonstrate methods to reliably measure the trap oscillation frequencies and the bottom frequency, based on periodic excitation of the trapping potential and on radio-frequency spectroscopy, respectively. We show that this hybrid trap can be operated in a well controlled regime that allows a reliable production of degenerate gases.Comment: 13 pages, 8 figure
    corecore