123 research outputs found

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    Constitutional genetic variation at the human aromatase gene (Cyp19) and breast cancer risk

    Get PDF
    The activity of the aromatase enzyme, which converts androgens into oestrogens and has a major role in regulating oestrogen levels in the breast, is thought to be a contributing factor in the development of breast cancer. We undertook this study to assess the role of constitutional genetic variation in the human aromatase gene (Cyp19) in the development of this disease. Our genotyping of 348 cases with breast cancer and 145 controls (all Caucasian women) for a published tetranucleotide repeat polymorphism at intron 4 of the Cyp19 gene revealed the presence of six common and two rare alleles. Contingency table analysis revealed a significant difference in allelic distribution between cases and controls (χ2 5df = 13.52, P = 0.019). The allele measuring 171 bp was over-represented in cases; of 14 individuals homozygous for this allele, 13 were cases. These individuals had a higher incidence of cancer in family members and an earlier age at diagnosis than other cases. In sequencing Cyp19's coding exons and regulatory regions, we discovered a perfect association between a silent polymorphism (G→A at Val80) and the high-risk genotype. Our conclusion is that constitutional genetic variation at the Cyp19 locus is associated with the risk of developing breast cancer, with the 171-bp allele serving as the high-risk allele. © 1999 Cancer Research Campaig

    Design and performance evaluation of a lightweight wireless early warning intrusion detection prototype

    Get PDF
    The proliferation of wireless networks has been remarkable during the last decade. The license-free nature of the ISM band along with the rapid proliferation of the Wi-Fi-enabled devices, especially the smart phones, has substantially increased the demand for broadband wireless access. However, due to their open nature, wireless networks are susceptible to a number of attacks. In this work, we present anomaly-based intrusion detection algorithms for the detection of three types of attacks: (i) attacks performed on the same channel legitimate clients use for communication, (ii) attacks on neighbouring channels, and (iii) severe attacks that completely block network's operation. Our detection algorithms are based on the cumulative sum change-point technique and they execute on a real lightweight prototype based on a limited resource mini-ITX node. The performance evaluation shows that even with limited hardware resources, the prototype can detect attacks with high detection rates and a few false alarms. © 2012 Fragkiadakis et al

    Rare Exonic Minisatellite Alleles in MUC2 Influence Susceptibility to Gastric Carcinoma

    Get PDF
    BACKGROUND: Mucins are the major components of mucus and their genes share a common, centrally-located region of sequence that encodes tandem repeats. Mucins are well known genes with respect to their specific expression levels; however, their genomic levels are unclear because of complex genomic properties. In this study, we identified eight novel minisatellites from the entire MUC2 region and investigated how allelic variation in these minisatellites may affect susceptibility to gastrointestinal cancer. METHODOLOGY/PRINCIPLE FINDINGS: We analyzed genomic DNA from the blood of normal healthy individuals and multi-generational family groups. Six of the eight minisatellites exhibited polymorphism and were transmitted meiotically in seven families, following Mendelian inheritance. Furthermore, a case-control study was performed that compared genomic DNA from 457 cancer-free controls with DNA from individuals with gastric (455), colon (192) and rectal (271) cancers. A statistically significant association was identified between rare exonic MUC2-MS6 alleles and the occurrence of gastric cancer: odds ratio (OR), 2.56; 95% confidence interval (CI), 1.31-5.04; and p = 0.0047. We focused on an association between rare alleles and gastric cancer. Rare alleles were divided into short (40, 43 and 44) and long (47, 50 and 54), according to their TR (tandem repeats) lengths. Interestingly, short rare alleles were associated with gastric cancer (OR = 5.6, 95% CI: 1.93-16.42; p = 0.00036). Moreover, hypervariable MUC2 minisatellites were analyzed in matched blood and cancer tissue from 28 patients with gastric cancer and in 4 cases of MUC2-MS2, minisatellites were found to have undergone rearrangement. CONCLUSIONS/SIGNIFICANCE: Our observations suggest that the short rare MUC2-MS6 alleles could function as identifiers for risk of gastric cancer. Additionally, we suggest that minisatellite instability might be associated with MUC2 function in cancer cells

    A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes

    Get PDF
    In computing the probability that a woman is a BRCA1 or BRCA2 carrier for genetic counselling purposes, it is important to allow for the fact that other breast cancer susceptibility genes may exist. We used data from both a population based series of breast cancer cases and high risk families in the UK, with information on BRCA1 and BRCA2 mutation status, to investigate the genetic models that can best explain familial breast cancer outside BRCA1 and BRCA2 families. We also evaluated the evidence for risk modifiers in BRCA1 and BRCA2 carriers. We estimated the simultaneous effects of BRCA1, BRCA2, a third hypothetical gene ‘BRCA3’, and a polygenic effect using segregation analysis. The hypergeometric polygenic model was used to approximate polygenic inheritance and the effect of risk modifiers. BRCA1 and BRCA2 could not explain all the observed familial clustering. The best fitting model for the residual familial breast cancer was the polygenic, although a model with a single recessive allele produced a similar fit. There was also significant evidence for a modifying effect of other genes on the risks of breast cancer in BRCA1 and BRCA2 mutation carriers. Under this model, the frequency of BRCA1 was estimated to be 0.051% (95% CI: 0.021–0.125%) and of BRCA2 0.068% (95% CI: 0.033–0.141%). The breast cancer risk by age 70 years, based on the average incidence over all modifiers was estimated to be 35.3% for BRCA1 and 50.3% for BRCA2. The corresponding ovarian cancer risks were 25.9% for BRCA1 and 9.1% for BRCA2. The findings suggest that several common, low penetrance genes with multiplicative effects on risk may account for the residual non-BRCA1/2 familial aggregation of breast cancer. The modifying effect may explain the previously reported differences between population based estimates for BRCA1/2 penetrance and estimates based on high-risk families

    Missense Mutations in the MEFV Gene Are Associated with Fibromyalgia Syndrome and Correlate with Elevated IL-1β Plasma Levels

    Get PDF
    BACKGROUND:Fibromyalgia syndrome (FMS), a common, chronic, widespread musculoskeletal pain disorder found in 2% of the general population and with a preponderance of 85% in females, has both genetic and environmental contributions. Patients and their parents have high plasma levels of the chemokines MCP-1 and eotaxin, providing evidence for both a genetic and an immunological/inflammatory origin for the syndrome (Zhang et al., 2008, Exp. Biol. Med. 233: 1171-1180). METHODS AND FINDINGS:In a search for a candidate gene affecting inflammatory pathways, among five screened in our patient samples (100 probands with FMS and their parents), we found 10 rare and one common alleles for MEFV, a gene in which various compound heterozygous mutations lead to Familial Mediterranean Fever (FMF). A total of 2.63 megabases of genomic sequence of the MEFV gene were scanned by direct sequencing. The collection of rare missense mutations (all heterozygotes and tested in the aggregate) had a significant elevated frequency of transmission to affecteds (p = 0.0085, one-sided, exact binomial test). Our data provide evidence that rare missense variants of the MEFV gene are, collectively, associated with risk of FMS and are present in a subset of 15% of FMS patients. This subset had, on average, high levels of plasma IL-1beta (p = 0.019) compared to FMS patients without rare variants, unaffected family members with or without rare variants, and unrelated controls of unknown genotype. IL-1beta is a cytokine associated with the function of the MEFV gene and thought to be responsible for its symptoms of fever and muscle aches. CONCLUSIONS:Since misregulation of IL-1beta expression has been predicted for patients with mutations in the MEFV gene, we conclude that patients heterozygous for rare missense variants of this gene may be predisposed to FMS, possibly triggered by environmental factors
    corecore