80 research outputs found

    Software Layer For FPGA-based Tesla Cavity Control System (part I)

    Get PDF
    The paper describes design and practical realization of software for laboratory purposes to control FPGA-based photonic and electronic equipment. There is presented a universal solution for all relevant devices with FPGA chips and gigabit optical links. The paper describes architecture of the software layers and program solutions of hardware communication based on Internal Interface (II) technology. Such a solution was used for superconducting Cavity Controller and Simulator (SIMCON) for the TESLA experiment in DESY (Hamburg). A number of practical examples of the software solutions for the SIMCON system were given in this paper

    A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam

    Get PDF
    We present the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland. SwissFEL is a very stable, compact and cost-effective X-ray FEL facility driven by a low-energy and ultra-low-emittance electron beam travelling through short-period undulators. It delivers stable hard X-ray FEL radiation at 1-Ă… wavelength with pulse energies of more than 500 ÎĽJ, pulse durations of ~30 fs (root mean square) and spectral bandwidth below the per-mil level. Using special configurations, we have produced pulses shorter than 1 fs and, in a different set-up, broadband radiation with an unprecedented bandwidth of ~2%. The extremely small emittance demonstrated at SwissFEL paves the way for even more compact and affordable hard X-ray FELs, potentially boosting the number of facilities worldwide and thereby expanding the population of the scientific community that has access to X-ray FEL radiation

    An Evolutionary Approach to the Design of Controllable Cellular Automata Structure for Random Number Generation

    Get PDF
    Cellular Automata (CA) has been used in pseudorandom number generation over a decade. Recent studies show that two-dimensional (2-d) CA Pseudorandom Number Generators (PRNGs) may generate better random sequences than conventional one-dimensional (1-d) CA PRNGs, but they are more complex to implement in hardware than 1-d CA PRNGs. In this paper, we propose a new class of 1-d CA Controllable Cellular Automata (CCA) without much deviation from the structure simplicity of conventional 1-d CA. We give a general definition of CCA first and then introduce two types of CCA – CCA0 and CCA2. Our initial study on them shows that these two CCA PRNGs have better randomness quality than conventional 1-d CA PRNGs but their randomness is affected by their structures. To find good CCA0/CCA2 structures for pseudorandom number generation, we evolve them using the Evolutionary Multi-Objective Optimization (EMOO) techniques. Three different algorithms are presented in this paper. One makes use of an aggregation function; the other two are based on the Vector Evaluated Genetic Algorithm (VEGA). Evolution results show that these three algorithms all perform well. Applying a set of randomness tests on the evolved CCA PRNGs, we demonstrate that their randomness is better than that of 1-d CA PRNGs and can be comparable to that of two-dimensional CA PRNGs

    >

    No full text
    • …
    corecore