3,817 research outputs found

    Limit theorem for a time-dependent coined quantum walk on the line

    Full text link
    We study time-dependent discrete-time quantum walks on the one-dimensional lattice. We compute the limit distribution of a two-period quantum walk defined by two orthogonal matrices. For the symmetric case, the distribution is determined by one of two matrices. Moreover, limit theorems for two special cases are presented

    Absorption problems for quantum walks in one dimension

    Get PDF
    This paper treats absorption problems for the one-dimensional quantum walk determined by a 2 times 2 unitary matrix U on a state space {0,1,...,N} where N is finite or infinite by using a new path integral approach based on an orthonormal basis P, Q, R and S of the vector space of complex 2 times 2 matrices. Our method studied here is a natural extension of the approach in the classical random walk.Comment: 15 pages, small corrections, journal reference adde

    Site-bond representation and self-duality for totalistic probabilistic cellular automata

    Full text link
    We study the one-dimensional two-state totalistic probabilistic cellular automata (TPCA) having an absorbing state with long-range interactions, which can be considered as a natural extension of the Domany-Kinzel model. We establish the conditions for existence of a site-bond representation and self-dual property. Moreover we present an expression of a set-to-set connectedness between two sets, a matrix expression for a condition of the self-duality, and a convergence theorem for the TPCA.Comment: 11 pages, minor corrections, journal reference adde

    Disturbances of both cometary and Earth's magnetospheres excited by single solar flares

    Get PDF
    In the solar wind a comet plays the role of a windvane that moves three-dimensionally in the heliomagnetosphere. Among the solar systems bodies, only comets have a wide range of inclination angles of their orbital planes to the ecliptic plane ranging from 0 to 90 deg. Therefore, observations of cometary plasma tails are useful in probing the heliomagnetospheric conditions in the high heliolatitudinal region. A comet can be compared to a polar-orbiting probe encircling the Sun. We will introduce two rare cases in which the magnetospheres of both the comet and the Earth are disturbed by a single solar flare

    Localization of the Grover walks on spidernets and free Meixner laws

    Full text link
    A spidernet is a graph obtained by adding large cycles to an almost regular tree and considered as an example having intermediate properties of lattices and trees in the study of discrete-time quantum walks on graphs. We introduce the Grover walk on a spidernet and its one-dimensional reduction. We derive an integral representation of the nn-step transition amplitude in terms of the free Meixner law which appears as the spectral distribution. As an application we determine the class of spidernets which exhibit localization. Our method is based on quantum probabilistic spectral analysis of graphs.Comment: 32 page
    corecore