3,817 research outputs found
Limit theorem for a time-dependent coined quantum walk on the line
We study time-dependent discrete-time quantum walks on the one-dimensional
lattice. We compute the limit distribution of a two-period quantum walk defined
by two orthogonal matrices. For the symmetric case, the distribution is
determined by one of two matrices. Moreover, limit theorems for two special
cases are presented
Absorption problems for quantum walks in one dimension
This paper treats absorption problems for the one-dimensional quantum walk
determined by a 2 times 2 unitary matrix U on a state space {0,1,...,N} where N
is finite or infinite by using a new path integral approach based on an
orthonormal basis P, Q, R and S of the vector space of complex 2 times 2
matrices. Our method studied here is a natural extension of the approach in the
classical random walk.Comment: 15 pages, small corrections, journal reference adde
Site-bond representation and self-duality for totalistic probabilistic cellular automata
We study the one-dimensional two-state totalistic probabilistic cellular
automata (TPCA) having an absorbing state with long-range interactions, which
can be considered as a natural extension of the Domany-Kinzel model. We
establish the conditions for existence of a site-bond representation and
self-dual property. Moreover we present an expression of a set-to-set
connectedness between two sets, a matrix expression for a condition of the
self-duality, and a convergence theorem for the TPCA.Comment: 11 pages, minor corrections, journal reference adde
Disturbances of both cometary and Earth's magnetospheres excited by single solar flares
In the solar wind a comet plays the role of a windvane that moves three-dimensionally in the heliomagnetosphere. Among the solar systems bodies, only comets have a wide range of inclination angles of their orbital planes to the ecliptic plane ranging from 0 to 90 deg. Therefore, observations of cometary plasma tails are useful in probing the heliomagnetospheric conditions in the high heliolatitudinal region. A comet can be compared to a polar-orbiting probe encircling the Sun. We will introduce two rare cases in which the magnetospheres of both the comet and the Earth are disturbed by a single solar flare
Localization of the Grover walks on spidernets and free Meixner laws
A spidernet is a graph obtained by adding large cycles to an almost regular
tree and considered as an example having intermediate properties of lattices
and trees in the study of discrete-time quantum walks on graphs. We introduce
the Grover walk on a spidernet and its one-dimensional reduction. We derive an
integral representation of the -step transition amplitude in terms of the
free Meixner law which appears as the spectral distribution. As an application
we determine the class of spidernets which exhibit localization. Our method is
based on quantum probabilistic spectral analysis of graphs.Comment: 32 page
- …