42 research outputs found

    Characterizations and simulations of a class of stochastic processes to model anomalous diffusion

    Get PDF
    In this paper we study a parametric class of stochastic processes to model both fast and slow anomalous diffusion. This class, called generalized grey Brownian motion (ggBm), is made up off self-similar with stationary increments processes (H-sssi) and depends on two real parameters alpha in (0,2) and beta in (0,1]. It includes fractional Brownian motion when alpha in (0,2) and beta=1, and time-fractional diffusion stochastic processes when alpha=beta in (0,1). The latters have marginal probability density function governed by time-fractional diffusion equations of order beta. The ggBm is defined through the explicit construction of the underline probability space. However, in this paper we show that it is possible to define it in an unspecified probability space. For this purpose, we write down explicitly all the finite dimensional probability density functions. Moreover, we provide different ggBm characterizations. The role of the M-Wright function, which is related to the fundamental solution of the time-fractional diffusion equation, emerges as a natural generalization of the Gaussian distribution. Furthermore, we show that ggBm can be represented in terms of the product of a random variable, which is related to the M-Wright function, and an independent fractional Brownian motion. This representation highlights the HH-{\bf sssi} nature of the ggBm and provides a way to study and simulate the trajectories. For this purpose, we developed a random walk model based on a finite difference approximation of a partial integro-differenital equation of fractional type.Comment: 25 pages, 9 figure

    Bernstein Processes Associated with a Markov Process

    Full text link
    Abstract. A general description of Bernstein processes, a class of diffusion processes, relevant to the probabilistic counterpart of quantum theory known as Euclidean Quantum Mechanics, is given. It is compatible with finite or infinite dimensional state spaces and singular interactions. Although the rela-tions with statistical physics concepts (Gibbs measure, entropy,...) is stressed here, recent developments requiring Feynman’s quantum mechanical tools (ac-tion functional, path integrals, Noether’s Theorem,...) are also mentioned and suggest new research directions, especially in the geometrical structure of our approach. This is a review of various recent developments regarding the construction and properties of Bernstein processes, a class of diffusions originally introduced for the purpose of Euclidean Quantum Mechanics (EQM), a probabilistic analogue o

    Random parallel transport on surfaces of finite type, and relations to homotopy

    Get PDF
    For general surfaces of finite type, probability measures for parallel transport are con­structed. Relations to the topology of the surface are pointed out. We also discuss possible loop invariants

    Gaussian random fields, infinite dimensional Ornstein-Uhlenbeck processes and symmetric Markov processes

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore