871 research outputs found
Autocompensative System for Measurement of the Capacitances
A simple and successful design of an autocompensative system with flip-flop sensor for measurement of capacitances is presented. The analysis of the sensor is based on the state description with the vertical rise segments of the control pulse. The theoretical results are compared with measured data and good agreement is reported
Tunneling gap of laterally separated quantum Hall states
We use a method of matched asymptotics to determine the energy gap of two
counter-propagating, strongly interacting, quantum Hall edge states. The
microscopic edge state dispersion and Coulomb interactions are used to
precisely constrain the short-distance behavior of an integrable field theory,
which then determines the low energy spectrum. We discuss the relationship of
our results to the tunneling measurements of Kang et al., Nature 403, 59
(2000).Comment: 4 pages, 1 figur
Two-particle Hadamard walk on dynamically percolated line and circle
Asymptotic dynamics of a Hadamard walk of two non-interacting quantum
particles on a dynamically percolated finite line or a circle is investigated.
We construct a basis of the attractor space of the corresponding random-unitary
dynamics and prove the completeness of our solution. In comparison to the
one-particle case, the structure of the attractor space is much more complex,
resulting in intriguing asymptotic dynamics. General results are illustrated on
two examples. First, for circles of length not divisible by 4 the boundary
conditions reduces the number of attractors considerably, allowing for fully
analytic solution. Second, we investigate line of length 4 and determine the
asymptotic cycle of reduced coin states and position distributions, focusing on
the correlations between the two particles. Our results show that a random
unitary evolution, which is a combination of quantum dynamics and a classical
stochasticity, leads to correlations between initially uncorrelated particles.
This is not possible for purely unitary evolution of non-interacting quantum
particles. The shared dynamically percolated graph can thus be considered as a
weak form of interaction
S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts
Collaboration scripts are usually implemented as parts of a particular collaborative-learning platform. Therefore, scripts of demonstrated effectiveness are hardly used with learning platforms at other sites, and replication studies are rare. The approach of a platform-independent description language for scripts that allows for easy implementation of the same script on different platforms has not succeeded yet in making the transfer of scripts feasible. We present an alternative solution that treats the problem as a special case of providing support on top of diverse Web pages: In this case, the challenge is to trigger support based on the recognition of a Web page as belonging to a specific type of functionally equivalent pages such as the search query form or the results page of a search engine. The solution suggested has been implemented by means of a tool called S-COL (Scripting for Collaborative Online Learning) and allows for the sustainable development of scripts and scaffolds that can be used with a broad variety of content and platforms. The toolâs functions are described. In order to demonstrate the feasibility and ease of script reuse with S-COL, we describe the flexible re-implementation of a collaboration script for argumentation in S-COL and its adaptation to different learning platforms. To demonstrate that a collaboration script implemented in S-COL can actually foster learning, an empirical study about the effects of a specific script for collaborative online search on learning activities is presented. The further potentials and the limitations of the S-COL approach are discussed
Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells.
BACKGROUND: Exposure of vascular smooth muscle cells (VSMCs) to excessive cyclic stretch such as in hypertension causes a shift in their phenotype. The focal adhesion protein zyxin can transduce such biomechanical stimuli to the nucleus of both endothelial cells and VSMCs, albeit with different thresholds and kinetics. However, there is no distinct vascular phenotype in young zyxin-deficient mice, possibly due to functional redundancy among other gene products belonging to the zyxin family. Analyzing zyxin function in VSMCs at the cellular level might thus offer a better mechanistic insight. We aimed to characterize zyxin-dependent changes in gene expression in VSMCs exposed to biomechanical stretch and define the functional role of zyxin in controlling the resultant VSMC phenotype.
METHODS AND RESULTS: DNA microarray analysis was used to identify genes and pathways that were zyxin regulated in static and stretched human umbilical artery-derived and mouse aortic VSMCs. Zyxin-null VSMCs showed a remarkable shift to a growth-promoting, less apoptotic, promigratory and poorly contractile phenotype with â90% of the stretch-responsive genes being zyxin dependent. Interestingly, zyxin-null cells already seemed primed for such a synthetic phenotype, with mechanical stretch further accentuating it. This could be accounted for by higher RhoA activity and myocardin-related transcription factor-A mainly localized to the nucleus of zyxin-null VSMCs, and a condensed and localized accumulation of F-actin upon stretch.
CONCLUSIONS: At the cellular level, zyxin is a key regulator of stretch-induced gene expression. Loss of zyxin drives VSMCs toward a synthetic phenotype, a process further consolidated by exaggerated stretch
Ferromagnetism in the two dimensional t-t' Hubbard model at the Van Hove density
Using an improved version of the projection quantum Monte Carlo technique, we
study the square-lattice Hubbard model with nearest-neighbor hopping t and
next-nearest-neighbor hopping t', by simulation of lattices with up to 20 X 20
sites. For a given R=2t'/t, we consider that filling which leads to a singular
density of states of the noninteracting problem. For repulsive interactions, we
find an itinerant ferromagnet (antiferromagnet) for R=0.94 (R=0.2). This is
consistent with the prediction of the T-matrix approximation, which sums the
most singular set of diagrams.Comment: 10 pages, RevTeX 3.0 + a single postscript file with all figure
Ferromagnetic Luttinger Liquids
We study weak itinerant ferromagnetism in one-dimensional Fermi systems using
perturbation theory and bosonization. We find that longitudinal spin
fluctuations propagate ballistically with velocity v_m << v_F, where v_F is the
Fermi velocity. This leads to a large anomalous dimension in the spin-channel
and strong algebraic singularities in the single-particle spectral function and
in the transverse structure factor for momentum transfers q ~ 2 Delta/v_F,
where 2 Delta is the exchange splitting.Comment: 4 pages, 3 figure
Flat-band ferromagnetism induced by off-site repulsions
Density matrix renormalization group method is used to analyze how the
nearest-neighbor repulsion V added to the Hubbard model on 1D triangular
lattice and a railway trestle (t-t') model will affect the electron-correlation
dominated ferromagnetism arising from the interference (frustration). Obtained
phase diagram shows that there is a region in smaller-t' side where the
critical on-site repulsion above which the system becomes ferromagnetic is
reduced when the off-site repulsion is introduced.Comment: 4 pages, RevTex, 6 figures in Postscript, to be published in Phys.
Rev.
Nearly universal crossing point of the specific heat curves of Hubbard models
A nearly universal feature of the specific heat curves C(T,U) vs. T for
different U of a general class of Hubbard models is observed. That is, the
value C_+ of the specific heat curves at their high-temperature crossing point
T_+ is almost independent of lattice structure and spatial dimension d, with
C_+/k_B \approx 0.34. This surprising feature is explained within second order
perturbation theory in U by identifying two small parameters controlling the
value of C_+: the integral over the deviation of the density of states
N(\epsilon) from a constant value, characterized by \delta N=\int d\epsilon
|N(\epsilon)-1/2|, and the inverse dimension, 1/d.Comment: Revtex, 9 pages, 6 figure
- âŠ