213 research outputs found

    Derivation of CPT resonance signals from density-matrix equations with all relevant sublevels of Cs atoms and confirmation of experimental results

    Full text link
    Coherent-population-trapping resonance is a quantum interference effect that appears in the two-photon transitions between the ground-state hyperfine levels of alkali atoms and is often utilized in miniature clock devices. To quantitatively understand and predict the performance of this phenomenon, it is necessary to consider the transitions and relaxations between all hyperfine Zeeman sublevels involved in the different excitation processes of the atom. In this study, we constructed a computational multi-level atomic model of the Liouville density-matrix equation for 32 Zeeman sublevels involved in the D1D_1 line of 133^{133}Cs irradiated by two frequencies with circularly polarized components and then simulated the amplitude and shape of the transmitted light through a Cs vapor cell. We show that the numerical solutions of the equation and analytical investigations adequately explain a variety of the characteristics observed in the experiment.Comment: 24 pages, 8 figure

    The nature of the progenitor of the M31 north-western stream: globular clusters as milestones of its orbit

    Get PDF
    We examine the nature, possible orbits and physical properties of the progenitor of the north-western stellar stream (NWS) in the halo of the Andromeda galaxy (M31). The progenitor is assumed to be an accreting dwarf galaxy with globular clusters (GCs). It is, in general, difficult to determine the progenitor\u27s orbit precisely because of many necessary parameters. Recently, Veljanoski et al. reported five GCs whose positions and radial velocities suggest an association with the stream. We use these data to constrain the orbital motions of the progenitor using test-particle simulations. Our simulations split the orbit solutions into two branches according to whether the stream ends up in the foreground or in the background of M31. Upcoming observations that will determine the distance to the NWS will be able to reject one of the two branches. In either case, the solutions require that the pericentric radius of any possible orbit be over 2 kpc. We estimate the efficiency of the tidal disruption and confirm the consistency with the assumption for the progenitor being a dwarf galaxy. The progenitor requires the mass ≳ 2 × 106 M⊙ and half-light radius ≳ 30 pc. In addition, N-body simulations successfully reproduce the basic observed features of the NWS and the GCs\u27 line-of-sight velocities

    Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides.

    Get PDF
    The mechanisms and sites of action of organochlorine (DDT-types and chlorinated alicyclics) and synthetic pyrethroid insecticides are presented with discussion of symptoms, physiological effects, and selectivity. The structural requirements for toxicity are assessed, and structure-activity relationships are considered for each subclass. Lipophilicity is important for all the groups because it facilitates delivery of these neurotoxicants to the site of action in the nerve. Steric factors including molecular volume, shape, and isomeric configuration greatly influence toxicity. Electronic parameters also have been demonstrated to affect biological activity in some of the groups of insecticides, e.g., Hammett's sigma and Taft's sigma * as indicators of electronegativity. New synthetic pyrethroids continue to be developed, with varied structures and different physicochemical and biological properties

    Bonding Nature in MgB2

    Full text link
    The accurate charge density of MgB2 was observed at room temperature(R.T.) and 15K by the MEM(Maximum Entropy Method)/Rietveld analysis using synchrotron radiation powder data. The obtained charge density clearly revealed the covalent bonding feature of boron forming the 2D honeycomb network in the basal plane, on the other hand, Mg is found to be in divalent state. A subtle but clear charge concentration was found on boron 2D sheets at 15K, which should be relating to superconductivity.Comment: 4 pages, 3 figure

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers

    Get PDF
    The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devicesopen4

    Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy

    Get PDF
    Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity±s.d. for colorectal cancer microsomes was 67.8±36.6 pmol min−1 mg−1. The Km of the tumoral enzyme (42±8 μM) is similar to that in healthy colorectal epithelium (36±8 μM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1±1.2 pmol min−1 mg−1. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs
    corecore