109 research outputs found

    Educational ecosystem in conditions of digital transformation

    Get PDF
    Currently, there is an active digital transformation of management practices and processes in the world, associated with the emergence of an ecosystem approach. The ecosystem approach is being actively implemented in all spheres of the economy and society. This phenomenon has not bypassed the education sphere. The article considers the priority tasks and trends in the development of education that meet the global challenges of the changing world economy, and aimed at developing a new paradigm of training throughout life. The purpose of the study is to analyze the factors influencing the creation of an educational ecosystem of the future, designed to form and develop a culture of lifelong learning, and, consequently, to the need for the introduction of network models based on elements of joint and voluntary learning. The research methods are comparative and causal analysis of management decisions. As a result of the study, the authors identify the elements of the educational and personnel ecosystems that affect the business processes of an organization in the context of digital transformation. It will significantly accelerate the possibilities of cooperation between the real sector of the economy, the educational ecosystem and the state within the framework of the above changes. The ecosystem transformation of education will allow to educate a new generation that will lead the transition to the effective and harmonious development of world civilization. The ecosystem approach will change the traditional ways of learning, discovering, acting on the principles of cooperation. These changes are aimed at dialogue in terms of business training in the conditions of digitalisation of the economy between the educational ecosystem and the business environment. Therefore, it is the personnel service for business processes that should be given increased attention to representatives of the real sector of the economy, the scientific community and educational institutions

    Differential impact of glucose administered intravenously and orally on circulating mir-375 levels in human subjects

    Get PDF
    Background: To date, numerous nucleic acid species have been detected in the systemic circulation including microRNAs (miRNAs); however their functional role in this compartment remains unclear. Objective: The aim of this study was to determine whether systemic levels of miRNAs abundant in blood, including the neuroendocrine tissue-enriched miR-375, are altered in response to a glucose challenge. Design: Twelve healthy males were recruited for an acute cross-over study which consisted of two tests each following an eight-hour fasting period. An oral glucose tolerance test (OGTT) was performed and blood samples were collected over a 3-hour period. Following a period of at least one week, the same participants were administered an isoglycemic intravenous glucose infusion (IIGI) with the same blood collection protocol. Results: The glucose response curve following the IIGI mimicked that obtained after the OGTT, but as expected systemic insulin levels were lower during the IIGI compared to the OGTT (P<0.05). MiR-375 levels in circulation were increased only in response to an OGTT and not during an IIGI. In addition, the response to the OGTT also coincided with the transient increase of circulating glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), and glucose-dependent insulinotropic polypeptide (GIP). Conclusions: The present findings show levels of miR-375 increase following administration of an OGTT and in light of its enrichment in cells of the gut, suggest that the gastrointestinal tract may play a significant role to the abundance and function of this microRNA in the blood

    Optimisation of the Schizosaccharomyces pombe urg1 expression system

    Get PDF
    The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down P urg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining P urg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair

    Optical biosensor differentiates signaling of endogenous PAR1 and PAR2 in A431 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protease activated receptors (PARs) consist of a family of four G protein-coupled receptors. Many types of cells express several PARs, whose physiological significance is mostly unknown.</p> <p>Results</p> <p>Here, we show that non-invasive resonant waveguide grating (RWG) biosensor differentiates signaling of endogenous protease activated receptor subtype 1 (PAR<sub>1</sub>) and 2 (PAR<sub>2</sub>) in human epidermoid carcinoma A431 cells. The biosensor directly measures dynamic mass redistribution (DMR) resulted from ligand-induced receptor activation in adherent cells. In A431, both PAR<sub>1 </sub>and PAR<sub>2 </sub>agonists, but neither PAR<sub>3 </sub>nor PAR<sub>4 </sub>agonists, trigger dose-dependent Ca<sup>2+ </sup>mobilization as well as G<sub>q</sub>-type DMR signals. Both Ca<sup>2+ </sup>flux and DMR signals display comparable desensitization patterns upon repeated stimulation with different combinations of agonists. However, PAR<sub>1 </sub>and PAR<sub>2 </sub>exhibit distinct kinetics of receptor re-sensitization. Furthermore, both trypsin- and thrombin-induced Ca<sup>2+ </sup>flux signals show almost identical dependence on cell surface cholesterol level, but their corresponding DMR signals present different sensitivities.</p> <p>Conclusion</p> <p>Optical biosensor provides an alternative readout for examining receptor activation under physiologically relevant conditions, and differentiates the signaling of endogenous PAR<sub>1 </sub>and PAR<sub>2 </sub>in A431.</p

    CD44 Expression in Oro-Pharyngeal Carcinoma Tissues and Cell Lines

    Get PDF
    Expression of CD44, a transmembrane hyaluronan-binding glycoprotein, is variably considered to have prognostic significance for different cancers, including oral squamous cell carcinoma. Although unclear at present, tissue-specific expression of particular isoforms of CD44 might underlie the different outcomes in currently available studies. We mined public transcriptomics databases for gene expression data on CD44, and analyzed normal, immortalized and tumour-derived human cell lines for splice variants of CD44 at both the transcript and protein levels. Bioinformatics readouts, from a total of more than 15,000 analyses, implied an increased CD44 expression in head and neck cancer, including increased expression levels relative to many normal and tumor tissue types. Also, meta-analysis of over 260 cell lines and over 4,000 tissue specimens of diverse origins indicated lower CD44 expression levels in cell lines compared to tissue. With minor exceptions, reverse transcribed polymerase chain reaction identified expression of the four main isoforms of CD44 in normal oral keratinocytes, transformed lines termed DT and HaCaT, and a series of paired primary and metastasis-derived cell lines from oral or pharyngeal carcinomas termed HN4/HN12, HN22/HN8 and HN30/HN31. Immunocytochemistry, Western blotting and flow cytometric assessments all confirmed the isoform expression pattern at the protein level. Overall, bioinformatic processing of large numbers of global gene expression analyses demonstrated elevated CD44 expression in head and neck cancer relative to other cancer types, and that the application of standard cell culture protocols might decrease CD44 expression. Additionally, the results show that the many variant CD44 exons are not fundamentally deregulated in a diverse range of cultured normal and transformed keratinocyte lines

    Protease Activated Receptor Signaling Is Required for African Trypanosome Traversal of Human Brain Microvascular Endothelial Cells

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, occurs when single-cell trypanosome protozoan parasites spread from the blood to brain over the blood-brain barrier (BBB). This barrier is composed of brain microvascular endothelial cells (BMECs) especially designed to keep pathogens out. Safe drugs for treating sleeping sickness are lacking and alternative treatments are urgently required. Using our human BMEC BBB model, we previously found that a parasite protease, brucipain, induced calcium activation signals that allowed this barrier to open up to parasite crossing. Because human BMECs express protease-activated receptors (PARs) that trigger calcium signals in BMECs, we hypothesized a functional link between parasite brucipain and BMEC PARs. Utilizing RNA interference to block the production of one type of PAR called PAR-2, we hindered the ability of trypanosomes to both open up and cross human BMECs. Using gene-profiling methods to interrogate candidate BMEC pathways specifically triggered by brucipain, several pathways that potentially link brain inflammatory processes were identified, a finding congruent with the known role of PAR-2 as a mediator of inflammation. Overall, our data support a role for brucipain and BMEC PARs in trypanosome BBB transmigration, and as potential triggers for brain inflammation associated with the disease

    Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo

    Get PDF
    Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2–9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow–liver–thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal—in combination with appropriate tools for systemic clearance of persistent HIV infection—greatly increases opportunities for HIV eradication

    The telomere bouquet facilitates meiotic prophase progression and exit in fission yeast

    Get PDF
    During meiotic prophase, chromosome arrangement and oscillation promote the pairing of homologous chromosomes for meiotic recombination. This dramatic movement involves clustering of telomeres at the nuclear membrane to form the so-called telomere bouquet. In fission yeast, the telomere bouquet is formed near the spindle pole body (SPB), which is the microtubule organising centre, functionally equivalent to the metazoan centrosome. Disruption of bouquet configuration impedes homologous chromosome pairing, meiotic recombination and spindle formation. Here, we demonstrate that the bouquet is maintained throughout meiotic prophase and promotes timely prophase exit in fission yeast. Persistent DNA damages, induced during meiotic recombination, activate the Rad3 and Chk1 DNA damage checkpoint kinases and extend the bouquet stage beyond the chromosome oscillation period. The auxin-inducible degron system demonstrated that premature termination of the bouquet stage leads to severe extension of prophase and consequently spindle formation defects. However, this delayed exit from meiotic prophase was not caused by residual DNA damage. Rather, loss of chromosome contact with the SPB caused delayed accumulation of CDK1-cyclin B at the SPB, which correlated with impaired SPB separation. In the absence of the bouquet, CDK1-cyclin B localised near the telomeres but not at the SPB at the later stage of meiotic prophase. Thus, bouquet configuration is maintained throughout meiotic prophase, by which this spatial organisation may facilitate local and timely activation of CDK1 near the SPB. Our findings illustrate that chromosome contact with the nuclear membrane synchronises meiotic progression of the nucleoplasmic chromosomes with that of the cytoplasmic SPB.the European Research Council and Cancer Research U

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given
    corecore