156 research outputs found
Alteration of Oral and Perioral Soft Tissue in Mice following Incisor Tooth Extraction
Oral and perioral soft tissues cooperate with other oral and pharyngeal organs to facilitate mastication and swallowing. It is essential for these tissues to maintain their morphology for efficient function. Recently, it was reported that the morphology of oral and perioral soft tissue can be altered by aging or orthodontic treatment. However, it remains unclear whether tooth loss can alter these tissues’ morphology. This study examined whether tooth loss could alter lip morphology. First, an analysis of human anatomy suggested that tooth loss altered lip morphology. Next, a murine model of tooth loss was established by extracting an incisor; micro-computed tomography revealed that a new bone replaced the extraction socket. Body weight was significantly lower in the tooth loss (UH) group than in the non-extraction control (NH) group. The upper lip showed a greater degree of morphological variation in the UH group. Proteomic analysis and immunohistochemical staining of the upper lip illustrated that S100A8/9 expression was higher in the UH group, suggesting that tooth loss induced lip inflammation. Finally, soft-diet feeding improved lip deformity associated with tooth loss, but not inflammation. Therefore, soft-diet feeding is essential for preventing lip morphological changes after tooth loss
Graft-Transmitted siRNA Signal from the Root Induces Visual Manifestation of Endogenous Post-Transcriptional Gene Silencing in the Scion
In plants, post-transcriptional gene silencing (PTGS) spreads systemically, being transmitted from the silenced stock to the scion expressing the corresponding transgene. It has been reported that a graft-transmitted siRNA signal can also induce PTGS of an endogenous gene, but this was done by top-grafting using silenced stock. In the present study involving grafting of Nicotiana benthamiana, we found that PTGS of an endogenous gene, glutamate-1-semialdehyde aminotransferase (GSA), which acts as a visible marker of RNAi via inhibition of chlorophyll synthesis, was manifested along the veins of newly developed leaves in the wild-type scion by the siRNA signal synthesized only in companion cells of the rootstock
Effects of the Higashi-Nihon Earthquake: Posttraumatic Stress, Psychological Changes, and Cortisol Levels of Survivors
On March 11, 2011, the Pacific side of Japan’s northeast was devastated by an earthquake and tsunami. For years, many researchers have been working on ways of examining the psychological effects of earthquakes on survivors in disaster areas who have experienced aftershocks, catastrophic fires, and other damage caused by the earthquake. The goal of this study is to examine scores on psychological measures and salivary cortisol level in these individuals both before and three months after the earthquake. The participants had been measured for these variables before the earthquake. After the earthquake, we carried out PTSD screening using CAPS for participants for another experiment, and then again conducted the aforementioned tests. We collected saliva samples from all survivors. Our results show that social relationship scores on the WHO-QOL26, negative mood scores of the WHO-SUBI, total GHQ score, POMS confusion scores, and CMI emotional status score after the earthquake showed scores indicating significantly decreased compared to before the earthquake. On the other hand, salivary cortisol levels after the earthquake was significantly increased compared to before the earthquake. Moreover, the result of a multiple regression analysis found that negative mood score on the WHO-SUBI and social relationship score on the WHO-QOL26 were significantly related to salivary cortisol levels. Our results thus demonstrate that several psychological stress induced by the earthquake was associated with an increase in salivary cortisol levels. These results show similar findings to previous study. We anticipate that this study will provide a better understanding of posttraumatic responses in the early stages of adaptation to the trauma and expand effective prevention strategies and countermeasures for PTSD
Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression
Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors
Ultrafast laser micro-nano structuring of transparent materials with high aspect ratio
Ultrafast lasers are ideal tools to process transparent materials because
they spatially confine the deposition of laser energy within the material's
bulk via nonlinear photoionization processes. Nonlinear propagation and
filamentation were initially regarded as deleterious effects. But in the last
decade, they turned out to be benefits to control energy deposition over long
distances. These effects create very high aspect ratio structures which have
found a number of important applications, particularly for glass separation
with non-ablative techniques. This chapter reviews the developments of
in-volume ultrafast laser processing of transparent materials. We discuss the
basic physics of the processes, characterization means, filamentation of
Gaussian and Bessel beams and provide an overview of present applications
太平洋地域における大陸と島嶼の森林の種多様性
Alpha diversity, or species richness, of East Asian mainland evergreen broadleaved forests, expressed by indices of Fisher\u27s alpha (agr) and S(100), a new index showing species number in a 100-individual sample, is significantly correlated with the climatic favorableness, expressed by Kira\u27s warmth index. On the contrary, diversity values of insular forests studied on Kyushu satellites of Japan, the Bonins, the Eastern Carolines of Micronesia, and the Galapagos in the eastern Pacific, are below those expected from the climate of respective oceanic islands. Species-individual curves, comparing mainland-and insular communities, also support clearly the above conclusion of species poverty in the insular communities studied.The original publication is available at www.springerlink.co
- …