12,482 research outputs found
Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke
Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this
Micromechanical Modeling and Design Optimization of 2-D Triaxial Braided Composites
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97106/1/AIAA2012-1257.pd
Quantitative conditions do not guarantee the validity of the adiabatic approximation
In this letter, we point out that the widely used quantitative conditions in
the adiabatic theorem are insufficient in that they do not guarantee the
validity of the adiabatic approximation. We also reexamine the inconsistency
issue raised by Marzlin and Sanders (Phys. Rev. Lett. 93, 160408, 2004) and
elucidate the underlying cause.Comment: corrected typos. Eq. (32) is corrected. No other change
Dissociated Oxygen Consumption and Carbon Dioxide Production in the Post-Cardiac Arrest Rat: A Novel Metabolic Phenotype.
BACKGROUND: The concept that resuscitation from cardiac arrest (CA) results in a metabolic injury is broadly accepted, yet patients never receive this diagnosis. We sought to find evidence of metabolic injuries after CA by measuring O
METHODS AND RESULTS: Rats were anesthetized and randomized into 3 groups: resuscitation from 10-minute asphyxia with inhaled 100% O
CONCLUSIONS: CA altered cellular metabolism resulting in increased V
Correlation dynamics between electrons and ions in the fragmentation of D molecules by short laser pulses
We studied the recollision dynamics between the electrons and D ions
following the tunneling ionization of D molecules in an intense short pulse
laser field. The returning electron collisionally excites the D ion to
excited electronic states from there D can dissociate or be further
ionized by the laser field, resulting in D + D or D + D,
respectively. We modeled the fragmentation dynamics and calculated the
resulting kinetic energy spectrum of D to compare with recent experiments.
Since the recollision time is locked to the tunneling ionization time which
occurs only within fraction of an optical cycle, the peaks in the D kinetic
energy spectra provides a measure of the time when the recollision occurs. This
collision dynamics forms the basis of the molecular clock where the clock can
be read with attosecond precision, as first proposed by Corkum and coworkers.
By analyzing each of the elementary processes leading to the fragmentation
quantitatively, we identified how the molecular clock is to be read from the
measured kinetic energy spectra of D and what laser parameters be used in
order to measure the clock more accurately.Comment: 13 pages with 14 figure
Non-Abelian Walls in Supersymmetric Gauge Theories
The Bogomol'nyi-Prasad-Sommerfield (BPS) multi-wall solutions are constructed
in supersymmetric U(N_C) gauge theories in five dimensions with N_F(>N_C)
hypermultiplets in the fundamental representation. Exact solutions are obtained
with full generic moduli for infinite gauge coupling and with partial moduli
for finite gauge coupling. The generic wall solutions require nontrivial
configurations for either gauge fields or off-diagonal components of adjoint
scalars depending on the gauge. Effective theories of moduli fields are
constructed as world-volume gauge theories. Nambu-Goldstone and
quasi-Nambu-Goldstone scalars are distinguished and worked out. Total moduli
space of the BPS non-Abelian walls including all topological sectors is found
to be the complex Grassmann manifold SU(N_F) / [SU(N_C) x SU(N_F-N_C) x U(1)]
endowed with a deformed metric.Comment: 62 pages, 17 figures, the final version in PR
The Topological Cigar Observables
We study the topologically twisted cigar, namely the SL(2,R)/U(1)
superconformal field theory at arbitrary level, and find the BRST cohomology of
the topologically twisted N=2 theory. We find a one to one correspondence
between the spectrum of the twisted coset and singular vectors in the Wakimoto
modules constructed over the SL(2,R) current algebra. The topological cigar
cohomology is the crucial ingredient in calculating the closed string spectrum
of topological strings on non-compact Gepner models.Comment: 28 page
Revisiting vertical structure of neutrino-dominated accretion disks: Bernoulli parameter, neutrino trapping and other distributions
We revisit the vertical structure of neutrino dominated accretion flows
(NDAFs) in spherical coordinates with a new boundary condition based on the
mechanical equilibrium. The solutions show that NDAF is significantly thick.
The Bernoulli parameter and neutrino trapping are determined by the mass
accretion rate and the viscosity parameter. According to the distribution of
the Bernoulli parameter, the possible outflow may appear in the outer region of
the disk. The neutrino trapping can essentially affect the neutrino radiation
luminosity. The vertical structure of NDAF is like a "sandwich", and the
multilayer accretion may account for the flares in gamma-ray bursts.Comment: 7 pages, 2 figures, Accepted for publication in Astrophysics & Space
Scienc
Towards granular hydrodynamics in two-dimensions
We study steady-state properties of inelastic gases in two-dimensions in the
presence of an energy source. We generalize previous hydrodynamic treatments to
situations where high and low density regions coexist. The theoretical
predictions compare well with numerical simulations in the nearly elastic
limit. It is also seen that the system can achieve a nonequilibrium
steady-state with asymmetric velocity distributions, and we discuss the
conditions under which such situations occur.Comment: 8 pages, 9 figures, revtex, references added, also available from
http://arnold.uchicago.edu/?ebn
Velocity correlations in granular materials
A system of inelastic hard disks in a thin pipe capped by hot walls is
studied with the aim of investigating velocity correlations between particles.
Two effects lead to such correlations: inelastic collisions help to build
localized correlations, while momentum conservation and diffusion produce long
ranged correlations. In the quasi-elastic limit, the velocity correlation is
weak, but it is still important since it is of the same order as the deviation
from uniformity. For system with stronger inelasticity, the pipe contains a
clump of particles in highly correlated motion. A theory with empirical
parameters is developed. This theory is composed of equations similar to the
usual hydrodynamic laws of conservation of particles, energy, and momentum.
Numerical results show that the theory describes the dynamics satisfactorily in
the quasi-elastic limit, however only qualitatively for stronger inelasticity.Comment: 12 pages (REVTeX), 15 figures (Postscript). submitted to Phys. Rev.
- …