39,074 research outputs found
Quasifree Knockout Of Deuterons In The â¶Li(α,αd)âŽHe Reaction At 23.6 MeV
αâd correlations in quasi-elastic scattering of 23.6-MeV α particles on the deuteron cluster of the â¶Li target were measured in and off the principal reaction plane. Despite the low c.m. energy of 14.2 MeV, the impulse approximation provides a reasonable description of the quasifree process. Computations were based on the asymptotic αâd S-state wave function and on the cluster-model wave function of â¶Li. Insensitivity of the fits to the details of the â¶Li cluster-model wave function indicates an extreme surface reaction mechanism. The full width at half-maximum of the spectator momentum distribution was found to be 48±6 MeV/c. By comparing the experimental cross section for the quasifree process at the maximum of the angular correlation ((d2Ï/dΩddΩ)=68±9 mb/srÂČ at Ξ=25°,Ξ(d)=45°) with the corresponding cross section for the free process, the probability of finding â¶Li as an αâd cluster was evaluated
Quantum Gravity Corrections for Schwarzschild Black Holes
We consider the Matrix theory proposal describing eleven-dimensional
Schwarzschild black holes. We argue that the Newtonian potential between two
black holes receives a genuine long range quantum gravity correction, which is
finite and can be computed from the supergravity point of view. The result
agrees with Matrix theory up to a numerical factor which we have not computed.Comment: 14 pages, Tex, no figure
Comment on "Generalized exclusion processes: Transport coefficients"
In a recent paper Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the
transport properties of a class of generalized exclusion processes. Analytical
expressions for the transport-diffusion coefficient are derived by ignoring
correlations. It is claimed that these expressions become exact in the
hydrodynamic limit. In this Comment, we point out that (i) the influence of
correlations upon the diffusion does not vanish in the hydrodynamic limit, and
(ii) the expressions for the self- and transport diffusion derived by Arita et
al. are special cases of results derived in [Phys. Rev. Lett. 111, 110601
(2013)].Comment: (citation added, published version
Adsorption and desorption in confined geometries: a discrete hopping model
We study the adsorption and desorption kinetics of interacting particles
moving on a one-dimensional lattice. Confinement is introduced by limiting the
number of particles on a lattice site. Adsorption and desorption are found to
proceed at different rates, and are strongly influenced by the
concentration-dependent transport diffusion. Analytical solutions for the
transport and self-diffusion are given for systems of length 1 and 2 and for a
zero-range process. In the last situation the self- and transport diffusion can
be calculated analytically for any length.Comment: Published in EPJ ST volume "Brownian Motion in Confined Geometries
Diffusion of interacting particles in discrete geometries
We evaluate the self-diffusion and transport diffusion of interacting
particles in a discrete geometry consisting of a linear chain of cavities, with
interactions within a cavity described by a free-energy function. Exact
analytical expressions are obtained in the absence of correlations, showing
that the self-diffusion can exceed the transport diffusion if the free-energy
function is concave. The effect of correlations is elucidated by comparison
with numerical results. Quantitative agreement is obtained with recent
experimental data for diffusion in a nanoporous zeolitic imidazolate framework
material, ZIF-8.Comment: 5 pages main text (3 figures); 9 pages supplemental material (2
figures). (minor changes, published version
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Chiral Zeromodes on Vortex-type Intersecting Heterotic Five-branes
We solve the gaugino Dirac equation on a smeared intersecting five-brane
solution in E_8\times E_8 heterotic string theory to search for localized
chiral zeromodes on the intersection. The background is chosen to depend on the
full two-dimensional overall transverse coordinates to the branes. Under some
appropriate boundary conditions, we compute the complete spectrum of zeromodes
to find that, among infinite towers of Fourier modes, there exist only three
localized normalizable zeromodes, one of which has opposite chirality to the
other two. This agrees with the result previously obtained in the domain-wall
type solution, supporting the claim that there exists one net chiral zeromode
localized on the heterotic five-brane system.Comment: 10 pages, 2 figure
- âŠ