207 research outputs found

    INTEGRAL/RossiXTE high-energy observation of a state transition of GX 339-4

    Get PDF
    On 2004 August 15, we observed a fast (shorter than 10 hours) state transition in the bright black-hole transient GX 339-4 simultaneously with RossiXTE and INTEGRAL. This transition was evident both in timing and spectral properties. Combining the data from PCA, HEXTE and IBIS, we obtained good quality broad-band (3-200 keV) energy spectra before and after the transition. These spectra indicate that the hard component steepened. Also, the high-energy cutoff that was present at ~70 keV before the transition was not detected after the transition. This is the first time that an accurate determination of the broad-band spectrum across such a transition has been measured on a short time scale. It shows that, although some spectral parameters do not change abruptly through the transition, the high-energy cutoff increases/disappears rather fast. These results constitute a benchmark on which to test theoretical models for the production of the hard component in these systems.Comment: Accepted for publication in MNRAS (9 pages, 6 figures

    Synthesizing Political Zero-Shot Relation Classification via Codebook Knowledge, NLI, and ChatGPT

    Full text link
    Recent supervised models for event coding vastly outperform pattern-matching methods. However, their reliance solely on new annotations disregards the vast knowledge within expert databases, hindering their applicability to fine-grained classification. To address these limitations, we explore zero-shot approaches for political event ontology relation classification, by leveraging knowledge from established annotation codebooks. Our study encompasses both ChatGPT and a novel natural language inference (NLI) based approach named ZSP. ZSP adopts a tree-query framework that deconstructs the task into context, modality, and class disambiguation levels. This framework improves interpretability, efficiency, and adaptability to schema changes. By conducting extensive experiments on our newly curated datasets, we pinpoint the instability issues within ChatGPT and highlight the superior performance of ZSP. ZSP achieves an impressive 40% improvement in F1 score for fine-grained Rootcode classification. ZSP demonstrates competitive performance compared to supervised BERT models, positioning it as a valuable tool for event record validation and ontology development. Our work underscores the potential of leveraging transfer learning and existing expertise to enhance the efficiency and scalability of research in the field.Comment: Preprin

    β\beta-NMR of Isolated 8^{8}Li+^{+} Implanted into a Thin Copper Film

    Full text link
    Depth-controlled β\beta-NMR was used to study highly spin-polarized 8^8Li in a Cu film of thickness 100 nm deposited onto a MgO substrate. The positive Knight Shifts and spin relaxation data show that 8^8Li occupies two sites at low temperatures, assigned to be the substitutional (SS) and octahedral (OO) interstitial sites. Between 50 to 100 K, there is a site change from OO to SS. The temperature dependence of the Knight shifts and spin-lattice relaxation rates at high temperatures, i.e. when all the Li are in the SS site, is consistent with the Korringa Law for a simple metal.Comment: Accepted for publication in Phys. Rev.

    Hyperfine Fields in an Ag/Fe Multilayer Film Investigated with 8Li beta-Detected Nuclear Magnetic Resonance

    Full text link
    Low energy β\beta-detected nuclear magnetic resonance (β\beta-NMR) was used to investigate the spatial dependence of the hyperfine magnetic fields induced by Fe in the nonmagnetic Ag of an Au(40 \AA)/Ag(200 \AA)/Fe(140 \AA) (001) magnetic multilayer (MML) grown on GaAs. The resonance lineshape in the Ag layer shows dramatic broadening compared to intrinsic Ag. This broadening is attributed to large induced magnetic fields in this layer by the magnetic Fe layer. We find that the induced hyperfine field in the Ag follows a power law decay away from the Ag/Fe interface with power 1.93(8)-1.93(8), and a field extrapolated to 0.23(5)0.23(5) T at the interface.Comment: 5 pages, 4 figure. To be published in Phys. Rev.

    The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus

    Get PDF
    Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus)

    Local Magnetic Properties of a Monolayer of Mn12 Single Molecule Magnets

    Full text link
    The magnetic properties of a monolayer of Mn12 single molecule magnets grafted onto a Si substrate have been investigated using depth-controlled β\beta-detected nuclear magnetic resonance. A low energy beam of spin polarized radioactive 8Li was used to probe the local static magnetic field distribution near the Mn12 monolayer in the Si substrate. The resonance linewidth varies strongly as a function of implantation depth as a result of the magnetic dipolar fields generated by the Mn12 electronic magnetic moments. The temperature dependence of the linewidth indicates that the magnetic properties of the Mn12 moments in this low dimensional configuration differ from bulk Mn12.Comment: 6 pages, 4 figure

    Giant Vortices Below the Surface of NbSe2_2 Detected Using Low Energy β\beta-NMR

    Full text link
    A low energy radioactive beam of polarized 8^8Li has been used to observe the vortex lattice near the surface of superconducting NbSe2_2. The inhomogeneous magnetic field distribution associated with the vortex lattice was measured using depth-resolved β\beta-detected NMR. Below TcT_c one observes the characteristic lineshape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius. The size of the vortex core varies strongly with magnetic field. In particular in a low field of 10.8 mT the core radius is much larger than the coherence length. The possible origin of these giant vortices is discussed.Comment: 5 pages, 3 figures. Submitted to Phys. Rev. Let

    Observation of slow order parameter fluctuations in superconducting films using beta-detected NMR

    Full text link
    We report beta-NMR investigations of polarized 8Li implanted in thin Pb and Ag/Nb films. At the critical superconducting temperature, we observe a singular peak in the spin relaxation rate in small longitudinal magnetic fields, which is attributed to fluctuations in the superconducting order parameter. However, the peak is more than an order of magnitude larger than the prediction based on the enhancement of the dynamic electron spin susceptibility by superconducting fluctuations and reflects the presence of unexpected slow fluctuations. Furthermore the fluctuations are rapidly suppressed in a small magnetic field, which may explain why they have not been observed previously with conventional NMR or NQR.Comment: 5 pages, 2 figure
    corecore