179 research outputs found

    Hydrodynamic Synchronisation of Model Microswimmers

    Full text link
    We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or pi, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.Comment: 17 pages, 8 figure

    An approximate model for cancellous bone screw fixation

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement

    The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone

    Get PDF
    The load-transfer pathway in trabecular bone is largely determined by its architecture. However, the influence of variations in mineralization is not known. The goal of this study was to examine the influence of inhomogeneously distributed degrees of mineralization (DMB) on intratrabecular stresses and strains. Cubic mandibular condylar bone specimens from fetal and newborn pigs were used. Finite element models were constructed, in which the element tissue moduli were scaled to the local DMB. Disregarding the observed distribution of mineralization was associated with an overestimation of average equivalent strain and underestimation of von Mises equivalent stress. From the surface of trabecular elements towards their core the strain decreased irrespective of tissue stiffness distribution. This indicates that the trabecular elements were bent during the compression experiment. Inhomogeneously distributed tissue stiffness resulted in a low stress at the surface that increased towards the core. In contrast, disregarding this tissue stiffness distribution resulted in high stress at the surface which decreased towards the core. It was concluded that the increased DMB, together with concurring alterations in architecture, during development leads to a structure which is able to resist increasing loads without an increase in average deformation, which may lead to damage

    The Herts and Minds study: Evaluating the effectiveness of Mentalization-Based Treatment (MBT) as an intervention for children in foster care with emotional and/or behavioural problems: a phase II, feasibility, randomised controlled trial.

    Get PDF
    Trial registration at https://doi.org/10.1186/ISRCTN90349442 © The Authors 2017. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Nick Midgley, Sarah Jane Besser, Helen Dye, Pasco Fearon, tim Gale, Kiri Jefferies-Sewell, Karen Irvine, Joyce Robinson, Solange Wyatt, David Wellsted and Sally Wood, 'The Herts and minds study: evaluating the effectiveness of mentalization-based treatment (MBT) as an intervention for children in foster care with emotional and/or behavioural problems: a phase II, feasibility, randomised controlled trial', Pilot and Feasibility Studies, Vol. 3(12, February 2017. The published version is available online at doi: 10.1186/s40814-017-0127-xBackground A significant proportion of children in the social care system in England present with mental health problems, with the majority experiencing some form of emotional and behavioural difficulties. The most effective treatments for these children are currently unknown, partly due to a lack of robust, controlled studies. Researchers have identified a number of obstacles to conducting well-designed research with this population, making the need to test the feasibility of a randomised controlled trial especially important. Methods/design This protocol outlines a two-arm, randomised control feasibility trial to explore the acceptability and credibility of mentalization-based treatment (MBT) as a treatment for reducing emotional and behavioural difficulties in looked after children and to test the possibility of addressing a number of methodological challenges to conducting high-quality research with this population. MBT is a relatively new intervention which, in the adaptation of the model tested here, includes many of the features of therapy identified in NICE guidelines as necessary to support children in care. The two arms are MBT and usual clinical care (UCC). The study will take place in Hertfordshire Partnership University NHS Foundation Trust with follow-up at 12 and 24 weeks. Discussion This study will aim to ascertain whether it is worthwhile and feasible to progress to testing the intervention in a full-scale definitive randomised controlled trial (RCT). This study therefore has the potential to improve our understanding of the obstacles to conducting high-quality research with this very vulnerable population, and in the medium term, could help to improve the stability of foster placements and the emotional well-being of children in care. Trial registration ISRCTN90349442Peer reviewe

    Characterisation of time-dependent mechanical behaviour of trabecular bone and its constituents

    Get PDF
    Trabecular bone is a porous composite material which consists of a mineral phase (mainly hydroxyapatite), organic phase (mostly type I collagen) and water assembled into a complex, hierarchical structure. In biomechanical modelling, its mechanical response to loads is generally assumed to be instantaneous, i.e. it is treated as a time-independent material. It is, however, recognised that the response of trabecular bone to loads is time-dependent. Study of this time-dependent behaviour is important in several contexts such as: to understand energy dissipation ability of bone; to understand the age-related non-traumatic fractures; to predict implant loosening due to cyclic loading; to understand progressive vertebral deformity; and for pre-clinical evaluation of total joint replacement. To investigate time-dependent behaviour, bovine trabecular bone samples were subjected to compressive loading, creep, unloading and recovery at multiple load levels (corresponding to apparent strain of 2,000-25,000 με). The results show that: the time-dependent behaviour of trabecular bone comprises of both recoverable and irrecoverable strains; the strain response is nonlinearly related to applied load levels; and the response is associated with bone volume fraction. It was found that bone with low porosity demonstrates elastic stiffening followed by elastic softening, while elastic softening is demonstrated by porous bone at relatively low loads. Linear, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic constitutive models were developed to predict trabecular bone’s time-dependent behaviour. Nonlinear viscoelastic constitutive model was found to predict the recovery behaviour well, while nonlinear viscoelastic-viscoplastic model predicts the full creep-recovery behaviour reasonably well. Depending on the requirements all these models can be used to incorporate time-dependent behaviour in finite element models. To evaluate the contribution of the key constituents of trabecular bone and its microstructure, tests were conducted on demineralised and deproteinised samples. Reversed cyclic loading experiments (tension to compression) were conducted on demineralised trabecular bone samples. It was found that demineralised bone exhibits asymmetric mechanical response - elastic stiffening in tension and softening in compression. This tension to compression transition was found to be smooth. Tensile multiple-load-creep-unload-recovery experiments on demineralised trabecular samples show irrecoverable strain (or residual strain) even at the low stress levels. Demineralised trabecular bone samples demonstrate elastic stiffening with increasing load levels in tension, and their time-dependent behaviour is nonlinear with respect to applied loads . Nonlinear viscoelastic constitutive model was developed which can predict its recovery behaviour well. Experiments on deproteinised samples showed that their modulus and strength are reasonably well related to bone volume fraction. The study considers an application of time-dependent behaviour of trabecular bone. Time-dependent properties are assigned to trabecular bone in a bone-screw system, in which the screw is subjected to cyclic loading. It is found that separation between bone and the screw at the interface can increase with increasing number of cycles which can accentuate loosening. The relative larger deformation occurs when this system to be loaded at the higher loading frequency. The deformation at the bone-screw interface is related to trabecular bone’s bone volume fraction; screws in a more porous bone are at a higher risk of loosening

    Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide

    Get PDF
    Summary We report the changes in biochemical markers of bone formation during the first 6 months of teriparatide therapy in postmenopausal women with osteoporosis according to previous antiresorptive treatment. Prior therapy does not adversely affect the response to teriparatide treatment. Similar bone markers levels are reached after 6 months of treatment. Introduction The response of biochemical markers of bone turnover with teriparatide therapy in subjects who have previously received osteoporosis drugs is not fully elucidated. We examined biochemical markers of bone formation in women with osteoporosis treated with teriparatide and determined: (1) whether the response is associated with prior osteoporosis therapy, (2) which marker shows the best performance for detecting a response to therapy, and (3) the correlations between early changes in bone markers and subsequent bone mineral density (BMD) changes after 24 months of teriparatide. Methods We conducted a prospective, open-label, 24-month study at 95 centers in 10 countries in 758 postmenopausal women with established osteoporosis (n = 181 treatment-naïve) who had at least one post-baseline bone marker determination. Teriparatide (20 μg/day) was administered for up to 24 months. We measured procollagen type I N-terminal propeptide (PINP), bone-specific alkaline phosphatase (b-ALP), and total alkaline phosphatase (t-ALP) at baseline, 1 and 6 months, and change in BMD at the lumbar spine, total hip and femoral neck from baseline to 24 months. Results Significant increases in formation markers occurred after 1 month of teriparatide regardless of prior osteoporosis therapy. The absolute increase at 1 month was lower in previously treated versus treatment-naïve patients, but after 6 months all groups reached similar levels. PINP showed the best signal-to-noise ratio. Baseline PINP correlated positively and significantly with BMD response at 24 months. Conclusions This study suggests that the long-term responsiveness of bone formation markers to teriparatide is not affected in subjects previously treated with antiresorptive drugs

    Faculty evaluation: Reliability of peer assessments of research, teaching, and service

    Full text link
    In this paper, assessments of faculty performance for the determination of salary increases are analyzed to estimate interrater reliability. Using the independent ratings by six elected members of the faculty, correlations between the ratings are calculated and estimates of the reliability of the composite (group) ratings are generated. Average intercorrelations are found to range from 0.603 for teaching, to 0.850 for research. The average intercorrelation for the overall faculty ratings is 0.794. Using these correlations, the reliability of the six-person group (the composite reliability) is estimated to be over 0.900 for each of the three areas and 0.959 for the overall faculty rating. Furthermore, little correlation is found between the ratings of performance levels of individual faculty members in the three areas of research, teaching, and service. The high intercorrelations and, consequently, the high composite reliabilities suggest that a reduction in the number of raters would have relatively small effects on reliability. The findings are discussed in terms of their relationship to issues of validity as well as to other questions of faculty assessment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43600/1/11162_2004_Article_BF00991934.pd

    Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility

    Get PDF
    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage
    corecore