12,579 research outputs found

    Commuting self-adjoint extensions of symmetric operators defined from the partial derivatives

    Get PDF
    We consider the problem of finding commuting self-adjoint extensions of the partial derivatives {(1/i)(\partial/\partial x_j):j=1,...,d} with domain C_c^\infty(\Omega) where the self-adjointness is defined relative to L^2(\Omega), and \Omega is a given open subset of R^d. The measure on \Omega is Lebesgue measure on R^d restricted to \Omega. The problem originates with I.E. Segal and B. Fuglede, and is difficult in general. In this paper, we provide a representation-theoretic answer in the special case when \Omega=I\times\Omega_2 and I is an open interval. We then apply the results to the case when \Omega is a d-cube, I^d, and we describe possible subsets \Lambda of R^d such that {e^(i2\pi\lambda \dot x) restricted to I^d:\lambda\in\Lambda} is an orthonormal basis in L^2(I^d).Comment: LaTeX2e amsart class, 18 pages, 2 figures; PACS numbers 02.20.Km, 02.30.Nw, 02.30.Tb, 02.60.-x, 03.65.-w, 03.65.Bz, 03.65.Db, 61.12.Bt, 61.44.B

    Spectral reciprocity and matrix representations of unbounded operators

    Get PDF
    Motivated by potential theory on discrete spaces, we study a family of unbounded Hermitian operators in Hilbert space which generalize the usual graph-theoretic discrete Laplacian. These operators are discrete analogues of the classical conformal Laplacians and Hamiltonians from statistical mechanics. For an infinite discrete set XX, we consider operators acting on Hilbert spaces of functions on XX, and their representations as infinite matrices; the focus is on â„“2(X)\ell^2(X), and the energy space HE\mathcal{H}_{\mathcal E}. In particular, we prove that these operators are always essentially self-adjoint on â„“2(X)\ell^2(X), but may fail to be essentially self-adjoint on HE\mathcal{H}_{\mathcal E}. In the general case, we examine the von Neumann deficiency indices of these operators and explore their relevance in mathematical physics. Finally we study the spectra of the HE\mathcal{H}_{\mathcal E} operators with the use of a new approximation scheme.Comment: 20 pages, 1 figure. To appear: Journal of Functional Analysi
    • …
    corecore