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Abstract

We study a family of unbounded Hermitian operators in Hilbert space which generalize the usual graph-
theoretic discrete Laplacian. For an infinite discrete set X, we consider operators acting on Hilbert spaces
of functions on X, and their representations as infinite matrices; the focus is on �2(X), and the energy space
HE . In particular, we prove that these operators are always essentially self-adjoint on �2(X), but may fail
to be essentially self-adjoint on HE . In the general case, we examine the von Neumann deficiency indices
of these operators and explore their relevance in mathematical physics. Finally we study the spectra of the
HE operators with the use of a new approximation scheme.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

This paper concerns the study of unbounded operators with dense domain in a Hilbert space,
and their representation in terms of (infinite) matrices. In particular, Theorem 2.8 shows that
a “matrix Laplacian” is always essentially self-adjoint on �2(X). This class of operators is a
generalization of the usual discrete Laplacian from graph theory. We also show how the same
operator is not essentially self-adjoint with respect to the energy space, where the usual �2 inner
product is replaced by an alternative inner product given by a natural (quadratic) energy form.
We give an axiomatic description of such energy spaces H and derive several properties of such
spaces from this axiom system. We also prove a Spectral Reciprocity Theorem (Theorem 5.16)
which establishes an inverse relationship between the spectrum of the Laplacian (as an operator
on H) and the spectrum of a matrix operator M (as an operator on �2(X)). The matrix entries of
M are defined in terms of a reproducing kernel for H.

The question of infinite matrix representations of geometric operators arose in a recent project
[12–20], where the authors study resistance networks and their applications. In these papers, the
authors found that crucial properties of resistance networks may be understood with the use of
an associated Laplace operator �, and its various representations. The harmonic analysis of re-
sistance forms in the self-adjoint case is worked out in great detail in [23–25] via an elegant
potential-theoretic approach. As noted in [12,24], while tempting to study � as an operator in
�2, this approach turns out to miss much of the harmonic analysis for the given resistance net-
work. The emphasis of the present paper is on the situation where � may be only essentially
self-adjoint, or possibly even have different self-adjoint extensions. While �2 detects important
spectral data of the Laplacian (and thus also some related combinatorial properties), it sees strik-
ingly little of the geometry of the resistance network, in comparison to the spectral theory of �

in the energy Hilbert space HE ; see [14,15,19]. For a particular problem, the choice of Hilbert
space (�2 or HE or possibly even something else) will play a crucial role in allowing one to
extract global properties of both the operator and the underlying space (network, graph, or more
general set). While [12–20] focus on the energy Hilbert space HE , the present paper examines
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the �2 theory in more depth. Among other things, we examine the deeper reason for why � is es-
sentially self-adjoint in �2 but not in HE , and that these two scenarios exhibit drastically different
boundary conditions in the sense of von Neumann’s deficiency indices [8,32].

1.1. Outline

Section 2 discusses some issues related to the matrix representation of unbounded operators
with dense domain in a Hilbert space. Special emphasis is placed on a class of operators which
we call matrix Laplacians, as they generalize the usual discrete Laplace operator on graphs, and
can be represented in terms of matrix multiplication by an infinite matrix A. Most of Section 2.2
is devoted to Theorem 2.8 (and the lemmas required for its proof), in which we prove that a
matrix Laplacian �A acting on �2(X) is always essentially self-adjoint.

Section 3 gives an axiomatic presentation of a class of reproducing kernel Hilbert spaces
(RKHS). The matrices considered in Section 2.2 give rise to an RKHS of this type, and the
RKHS studied in Section 4 is a special case of this class.

Section 4 considers a special case of the reproducing kernel Hilbert spaces of Section 3 which
the authors have previously studied in [12–20], namely, the energy space associated to a resis-
tance network. Section 4.2 describes how � can fail to be essentially self-adjoint (as an operator
on H) by explicitly computing an example with deficiency indices (1,1) and giving a formula
for the defect vector (which is also shown to be bounded and of finite energy).

Section 5 returns to the consideration of the matrix M with entries Mxy = 〈vx, vy〉H , which
first appeared as a positive semidefinite function on X × X in Section 3. The key result in this
section is Theorem 5.16, which establishes a form of spectral reciprocity between � and D, the
diagonalization of M . The exact relationship between M and � is made precise in Corollary 5.20;
see also Remark 5.25.

1.2. Basic definitions and facts for unbounded operators on a Hilbert space

In this section, we recall some terms and basic results from the theory of unbounded operators
on a Hilbert space. This material can be found in a standard reference, such as [8] or [29].

Consider an operator T acting on a complex Hilbert space H. We will use D = domT to
denote the domain of the operator T , so D is always a dense linear subspace of H.

Definition 1.1. The operator T is Hermitian or (symmetric or formally self-adjoint) iff

〈T u,v〉 = 〈u,T v〉, for all u,v ∈ D.

Definition 1.2. Let T be a densely defined operator in a Hilbert space H. Define

dom
(
T ∗) := {

v ∈ H
.
.
. ∃C < ∞ s.t.

∣∣〈v,T u〉∣∣� C‖u‖, ∀u ∈ dom(T )
}
.

In that case, by Riesz’s Theorem, there exists a unique w ∈ H such that

〈v,T u〉 = 〈w,u〉, ∀u ∈ dom(T ),

and we set T ∗v = w. Then T ∗ is the adjoint of T .
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Definition 1.3. If S and T are operators with dense domains domS ⊆ domT ⊆ H, then T is an
extension of S iff T restricted to domS coincides with S. This is typically denoted S ⊆ T , where
the inclusion refers to the containment of the respective operator graphs.

Definition 1.4. An operator T with dense domain D ⊆ H is said to be self-adjoint iff T ∗ = T .
The operator T is said to be essentially self-adjoint iff it has a unique self-adjoint extension.1

Definition 1.5. If T is a densely defined operator on H, then T is semibounded iff

〈u,T u〉 � 0, for all u ∈ dom(T ), (1.1)

or if the reverse inequality is true. If (1.1) holds, we say that T is a positive semidefinite operator.

Lemma 1.6. If T is an operator on a Hilbert space, then T is Hermitian iff T ⊆ T ∗.

Lemma 1.7. Let T be a Hermitian operator on a Hilbert space. Then the essential self-
adjointness of T is equivalent to

(i) the closure of T is self-adjoint, or
(ii) ker(T ∗ ± i) = {0}.

If T is Hermitian and semibounded, then T is essentially self-adjoint iff

(iii) ker(I + T ∗) = {0}, or equivalently, the range ran(I + A) is dense in H.

Since the Laplace operator T = � discussed below is semibounded, we find it most conve-
nient to use criterion (iii). In this case, T is essentially self-adjoint if and only if the eigenvalue
problem T ∗v = −v has only the trivial solution v = 0.

Since the property of semiboundedness is critical in the following, it is shown for the operator
� acting on the Hilbert space H = �2(X) in Lemma 2.7. The semiboundedness of the opera-
tor � acting on the reproducing kernel energy Hilbert spaces H = H of Section 3 is shown in
Lemma 3.15.

2. Unbounded operators on the separable Hilbert space HHH = �2(X)

We stress the interplay between operators defined on a dense domain in Hilbert space H on
the one hand and their matrix representation on the other. The questions we address arise only
in the case when H is infinite-dimensional, so we will be considering infinite matrices. Once H

is given, we may select an orthonormal basis B . Selecting an index set X for B , we note that H

is then isometrically isomorphic to �2(X) = the square summable sequences indexed by X. We
will restrict to the case when X is countable, i.e., H separable. Our infinite matrices will then
have rows and columns indexed by the set X.

In some of our applications, the set X will be the set of vertices on some weighted graph
(G, c) with c some (positive and symmetric) function defined on the set of edges in G. In this

1 In which case, that unique self-adjoint extension is just the closure of T , in accordance with Lemma 1.7(i).
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case, �2(X) will not capture the important data for (G, c) and we use a second Hilbert space
HE defined from an energy form for (G, c). In this case, there is a natural Laplace operator
� associated with (G, c). It turns out that it will have quite different properties depending on
whether it is computed in �2(X) or in HE . The matrix representations for � will be different for
the two Hilbert spaces. Understanding the interrelations of these two versions of � in terms of
their matrix representations is a main theme of this paper.

2.1. Matrix representations of operators on �2(X)

We write �2(X) = �2(X,μ) where μ is counting measure, and we use the usual inner product

〈u,v〉�2 :=
∑
x∈X

u(x)v(x),

and let T : D → H be a linear operator on H. For the Hilbert space �2(X), we use the orthonormal
basis (onb) of the Dirac masses {δx}x∈X given by

δx(y) =
{

1, if y = x,

0, if y �= x.

A function u on X will be viewed as a column vector. If A = (ax,y)x,y∈X is an R-valued function
on X × X, then TA(u) = Au is defined by

TA : u → Au, where (Au)(x) =
∑
y∈X

ax,yu(y) (2.1)

(i.e., by matrix multiplication) with the understanding that the summation in the right-hand side
of (2.1) is absolutely convergent. Henceforth, we describe an object such as A as an infinite
matrix with rows and columns indexed by X.

Definition 2.1. The collection of all finitely-supported functions on X is

c0(X) := {u : X → C
.
.
. u|X\F = 0 for some finite subset F ⊆ X}. (2.2)

Lemma 2.2. If A = (ax,y)x,y∈X is an infinite matrix, then matrix multiplication (2.1) defines an
operator

TA : c0(X) → �2(X) (2.3)

if and only if for any fixed y ∈ X, the function x → ax,y is in �2(X). In this case, TA is Hermitian
if and only if ax,y = ay,x for all x, y ∈ X.

Proof. This is clear because Aδy = a·,y is the column in A with index y and 〈δx,Aδy〉 = ax,y .
The latter claim is standard. �
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Lemma 2.3. Let A = (ax,y)x,y∈X be an infinite matrix which defines an operator TA : c0(X) →
�2(X) as in Lemma 2.2. Then the following two conditions are equivalent, for two vectors v and
w in �2(X):

(i) w(y) =∑
x∈X ax,yv(x) is absolutely convergent for each y ∈ X.

(ii) v ∈ dom(T ∗
A) and T ∗

Av = w.

In particular, the action of the operator T ∗
A is given by formula (2.1).

Proof. (i) ⇒ (ii). To show that v ∈ domT ∗
A , note that 〈TAu,v〉�2 is equal to

∑
x∈X

TAu(x)v(x) =
∑
x∈X

∑
y∈Y

ax,yu(y)v(x) =
∑
y∈X

∑
x∈X

ax,yv(x)u(y) =
∑
y∈X

w(y)u(x), (2.4)

by Fubini–Tonelli. This gives the estimate |〈TAu,v〉| � ‖w‖�2‖u‖�2 by the Cauchy–Schwarz
inequality, which means v ∈ domT ∗

A . The equality T ∗
Av = w follows from (2.4).

For the converse, note that w ∈ �2(X) because v ∈ dom(T ∗
A). Then the same calculation in

reverse gives
∑

x∈X u(x)T ∗
Av(x) =∑

x∈X

∑
y∈X ax,yu(y)v(x). �

Corollary 2.4. There exists w ∈ H such that 〈v,TAu〉�2 = 〈w,u〉�2 holds for all u ∈ domTA

if and only if v ∈ domT ∗
A and T ∗

Av = w. If we additionally assume that A is symmetric, the
pointwise identity (Av)(x) = w(x) holds for all x ∈ X.

2.2. Matrix Laplace operators on �2(X)

In this section, we consider a Laplacian to be the operator associated to a matrix satisfying the
conditions of Definition 2.5. Our main result in this section is Theorem 2.8, which asserts that
these three elementary conditions are sufficient to ensure the associated operator is essentially
self-adjoint, and hence has a well-defined and unique spectral representation.

Definition 2.5. If X is a countably infinite set, then we say that the infinite matrix A =
(ax,y)x,y∈X defines a (matrix) Laplacian iff A satisfies

(i) ax,y = ay,x , for all x, y ∈ X;
(ii) ax,y � 0 if x �= y; and

(iii)
∑

y∈X ax,y = 0, for all x ∈ X.

In this case, we write �A for the corresponding Hermitian operator �A : c0(X) → �2(X) de-
fined by matrix multiplication, as in Lemma 2.2. Observe that since A has R-valued entries,
�A commutes with conjugation and hence we may restrict attention to real Hilbert spaces, as
convenient.

Lemma 2.6. If the infinite matrix A = (ax,y)x,y∈X defines a matrix Laplacian, then

Au(x) =
∑
y∈X

(−ax,y)
(
u(x) − u(y)

)
for any u ∈ �2(X). (2.5)
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Proof. It follows immediately from Definition 2.5(ii)–(iii) that ax,x = −∑
y∈X\{x} ax,y � 0,

for each x ∈ X, so the sum in (iii) is automatically absolutely convergent and hence (for each
fixed x), the function ax,y ∈ �2(X) by the Cauchy–Schwarz inequality. Thus (2.1) is absolutely
convergent in this case, and we are justified in making the following rearrangement:

(Au)(x) = ax,xu(x) +
∑

y∈X\{x}
ax,yu(y) = −

∑
y∈X\{x}

ax,yu(x) +
∑

y∈X\{x}
ax,yu(y)

=
∑
y∈X

(−ax,y)
(
u(x) − u(y)

)
. (2.6)

Note that the summand for y = x is equal to 0 in the series (2.6). �
Lemma 2.7 (Semiboundedness of �A on c0(X)). If the infinite matrix A = (ax,y)x,y∈X defines a
matrix Laplacian on a countably infinite set X, then �A is semibounded and positive semidefinite
on its domain c0(X), with

〈u,�Au〉�2 = 1

2

∑
x,y∈X

(−ax,y)
∣∣u(x) − u(y)

∣∣2, for all u ∈ c0(X). (2.7)

Proof. Let u ∈ c0(X). We also assume u is R-valued for ease of computation; the general case
follows immediately, upon polarization. Using (2.5) and (iii) from Definition 2.5, we can write
〈u,�Au〉�2 as

∑
x∈X

u(x)
∑
y∈X

(−ax,y)
(
u(x) − u(y)

)=
∑
x∈X

∑
y∈X

(−ax,y)u(x)2 −
∑
x∈X

∑
y∈X

(−ax,y)u(x)u(y)

=
∑
x∈X

ax,xu(x)2 −
∑
x∈X

u(x)
∑
y∈X

(−ax,y)u(y). (2.8)

Observe that each sum has only finitely many terms, due to the restricted support of u; hence all
rearrangements here (and below) are justified. Applying the Cauchy–Schwarz inequality to the
rightmost series twice,

∑
x∈X

u(x)
∑
y∈X

(−ax,y)u(y) �
∑
x∈X

u(x)

(∑
y∈X

(−ax,y)

)1/2(∑
y∈X

(−ax,y)u(y)2
)1/2

�
(∑

x∈X

ax,xu(x)2
)1/2(∑

x∈X

∑
y∈X

(−ax,y)u(y)2
)1/2

=
(∑

x∈X

ax,xu(x)2
)

,

so that the difference in (2.8) is nonnegative. This proves 〈u,�Au〉�2 � 0 for all u ∈ c0(X), so
that �A is semibounded. To obtain the identity (2.7), continue to assume u ∈ c0(X) so that each
of the following sums has only finitely many terms:
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〈u,�Au〉�2 =
∑
x∈X

u(x)
∑
y∈X

(−ax,y)
(
u(x) − u(y)

)

= 1

2

∑
x∈X

∑
y∈X

(−ax,y)
(
u(x)2 − u(x)u(y)

)+ 1

2

∑
x∈X

∑
y∈X

(−ax,y)
(
u(x)2 − u(x)u(y)

)

= 1

2

∑
x∈X

∑
y∈X

(−ax,y)
(
u(x)2 − u(x)u(y)

)+ 1

2

∑
y∈X

∑
x∈X

(−ax,y)
(
u(y)2 − u(x)u(y)

)

= 1

2

∑
x∈X

∑
y∈X

(−ax,y)
(
u(x)2 − 2u(x)u(y) + u(y)2),

which is equal to (2.7). �
Theorem 2.8 (Essential self-adjointness of matrix Laplacians on �2(X)). If the infinite matrix
A = (ax,y)x,y∈X defines a matrix Laplacian on X, then the corresponding Hermitian operator
�A : c0(X) → �2(X) is essentially self-adjoint.

Remark 2.9. The proof of Theorem 2.8 requires Lemma 2.7, variants of which appear in the
literature in different contexts, for example, [24, Cor. 6.9] and [9, Thm. 1.3.1]. Theorem 2.8
extends and corrects [11, Thm. 3.1] (the result is stated correctly, but there is an error in the
proof).

Proof of Theorem 2.8. By Lemma 2.7 and Lemma 1.7(iii), �A would fail to be essentially
self-adjoint if and only if there were a nonzero solution of

�∗
Au = −u, u ∈ dom�∗

A. (2.9)

By way of contradiction, suppose u �= 0 satisfies (2.9). We can additionally assume that there is
a point x1 for which u(x1) > 0 because u is not the zero function and one can replace u with −u

if necessary (i.e., in the case u � 0). By combining Corollary 2.4 and Lemma 2.6 with (2.9), one
has

∑
y∈X

(−ax,y)
(
u(x) − u(y)

)= (Au)(x) = �∗
Au(x) = −u(x), for all x ∈ X. (2.10)

Then (2.10) implies
∑

y∈X(−ax1,y)(u(x1)−u(y)) = −u(x1) < 0, and must be the case that some
term of this sum is negative. That is, for some x2 with −ax1,x2 > 0 (recall from Definition 2.5(ii)
that ax,y � 0 whenever x �= y), one has

(−ax1,x2)
(
u(x1) − u(x2)

)= −εu(x1),

for some ε > 0. Solving for u(x2) gives

−ax1,x2 + ε
u(x1) = u(x2),
−ax1,x2
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so that u(x2) > u(x1). Continuing in this fashion, we obtain a sequence (xn)
∞
n=0 for which

u(xn) > u(x0) > 0, and it is clear that u cannot be in �2(X). This contradicts u ∈ dom�∗
A. �

Remark 2.10. Though the proof above was obtained independently, it bears a striking similarity
to the proof in [35, Th. 1.3.1]. Additionally, after a first version of this paper was completed,
we discovered that Keller and Lenz have extended this result to the situation of more general
measures in [21] and [22], as long as the measure gives weight ∞ to infinite paths. (This is true
automatically for the counting measure, which we use exclusively.) We believe the similarity
with the present line of reasoning (i.e., following a sequence of vertices satisfying a certain
property) points to a deeper commonality. Note also that the results of [21,22] allow for positive
potentials (denoted therein by c). Consequently, one cannot hope to study the deficiency spaces
of � unless one considers (i) �2 spaces with respect to a measure which violates this axiom, or
(ii) some other Hilbert space entirely. In this paper, we elect to go with the latter option, and
hence focus on the energy Hilbert space in Sections 3–5. Related but less general results also
appear in [33,35]; see also [34]. Finally, we would like to mention the recent and relevant results
of [10] concerning essential self-adjointness of closely related discrete Schrödinger operators.
In particular, the proof of [10, Prop. 1.1(b)] uses a novel approximation approach which does
not appear to translate immediately into the present context. In earlier versions of this paper,
we attempted to give direct proofs of Theorem 2.8 via various approximation arguments of the
form

0 � 〈un,�Aun〉�2
n→∞−→ 〈u,�Au〉�2 = 〈u,−u〉�2 = −‖u‖2

2 � 0.

However, in the end, it turned out to be exceedingly difficult to justify certain interchanges of
limit and integral, and we were driven to the more elementary and less direct approach given
above.

3. Axioms for a reproducing kernel energy space

In this section, we give some axioms for a certain type of reproducing kernel Hilbert space
that distill the essential properties of the energy space HE discussed in Section 4.

3.1. The axioms

Let us fix a set X and suppose that we have a quadratic form Q defined for functions u on X

with domain dom Q = {u .
.
. Q(u) < ∞}. Suppose that H = dom Q/ker Q is a Hilbert space with

respect to the inner product obtained from Q by polarization, that is, under

〈u,v〉H := 1

4

(
Q(u + v) − Q(u − v) + iQ(u + iv) − iQ(u − iv)

)
, (3.1)

and that H satisfies the following axioms.

Axiom 1. The constant function 1(x) ≡ 1 is an element of ker Q.
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Axiom 2. For each x ∈ X, the Dirac (point) mass δx is contained in dom Q, where δx is defined
by

δx(y) =
{

1, y = x,

0, y �= x.
(3.2)

Axiom 3. For every pair of points x, y ∈ X, there is a constant C = Cx,y such that

∣∣f (x) − f (y)
∣∣� C‖f ‖H, for all f ∈ dom Q. (3.3)

Remark 3.1. In most cases, it will not be necessary to distinguish between a function u ∈ dom Q
and its corresponding equivalence class in H. However, whenever it is useful to make the dis-
tinction, we use the notation [u]Q to indicate the equivalence containing the function u defined
on X.

Remark 3.2. The axiom system above is very similar to the notion of resistance form as devel-
oped in [23,24] (see also the references therein), although the axioms above evolved indepen-
dently, and from different considerations. Axioms 1–3 allow for slightly more generality than
resistance forms.

Definition 3.3. For a Hilbert space H of functions on X, a reproducing kernel is a family
{vx}x∈X ⊆ H satisfying

〈vx,u〉H = u(x), for all x ∈ X and for any u ∈ dom Q, (3.4)

and a relative reproducing kernel is a family {vx,y}x,y∈X ⊆ H satisfying

〈vx,y, u〉H = u(x) − u(y), for all x, y ∈ X and for any u ∈ dom Q. (3.5)

Lemma 3.4. Axiom 3 ensures the existence of a relative reproducing kernel for H.

Proof. First, note that 〈vx,y, u〉H means 〈vx,y, [u]Q〉H, as in Remark 3.1. Next, Axiom 3 asserts
continuity of the linear functional Lx,y : H → C defined by Lx,yu = u(x) − u(y), so Riesz’s
lemma gives a vx,y ∈ H satisfying (3.5), for each x, y ∈ X. �

Henceforth, it will be convenient to fix a reference point o ∈ X to act as an origin and consider
the singly-indexed family {vx}x∈X ⊆ H, where vx = vx,o. All results will be independent of the
choice of o.

Definition 3.5. Define the possibly unbounded (abstract) Laplace operator with domain

dom� := span
{
1, {vx}x∈X\{o}

}⊆ H, (3.6)

by the pointwise equation

(�w)(x) := 〈δx,w〉H. (3.7)
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Remark 3.6. In (3.7), the notation 〈δx,w〉H really means 〈[δx]Q,w〉H, but we can suppress the
equivalence class notation because any two representatives differ by an element of ker Q.

Corollary 3.7. dom� is dense in H.

Proof. Suppose that 〈vx,u〉H = 0 for all x ∈ X. Then by (3.5), u must be constant. �
Remark 3.8. It is often the case that �w = δx does not have a solution in H (this is explored in
[12]). However, �w = δx − δo always has a solution; this follows from Lemma 3.9, just below,
and is due in some sense to the “balanced” nature of δx − δy ; see [30, §III.3]. For either �w = δx

or �w = δx − δo, the solution w is nonunique precisely when ker� ∩ H is nontrivial.

Lemma 3.9. For each x �= o, one has �vx(y) = (δx − δo)(y), for all y ∈ X.

Proof. From (3.7), we have �vx(y) = 〈[δy]Q, vx〉H, where [δy]Q ∈ H is the class containing
the function δy defined as in (3.2); see also Remark 3.1 and Remark 3.6. The result now follows
via (3.5) by

〈[δy]Q, vx

〉
H = δy(x) − δy(o) = δx(y) − δo(y). �

Remark 3.10. From Lemma 3.9, Axiom 2 implies that �u ∈ dom Q and hence �u represents a
unique element of H. Thus, expressions like 〈u,�v〉H are well defined, and in particular, so is
〈u,�vx〉H for any x ∈ X, if u ∈ H or u ∈ dom Q.

The following lemma was suggested by (and due to) the referee, for its use in Lemma 3.21.

Lemma 3.11. Under Axioms 1–3, the set {vx}x∈X\{o} is linearly independent.

Proof. Suppose one has a linear combination u = ∑
ξxvx = 0 where at most finitely many of

the coefficients ξx are nonzero. Then u ∈ dom� and Lemma 3.9 gives

0 = �u =
∑

ξx�vx =
∑

ξx(δx − δo),

whence ξx = 0 for all x ∈ X\{o}. �
3.2. Some basic properties of the abstract Laplacian

In this section, we show that the definitions given above are sufficient to prove that � is
Hermitian and even semibounded. Throughout this section, we abuse notation as described in
Remark 3.6 and denote both a function and the equivalence class containing it by the same
symbol.

Lemma 3.12. If δxy is the Kronecker delta, then

〈vx,�vy〉H = δxy + 1 − δxo − δyo, ∀x, y ∈ X. (3.8)
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Proof. Note that �vy ∈ H by Remark 3.10, and so

〈vx,�vy〉H = (�vy)(x) − (�vy)(o) = 〈δx, vy〉H − 〈δo, vy〉H,

by (3.5) and (3.7). Again using (3.5), the result follows via

〈δx, vy〉H − 〈δo, vy〉H = (
δx(y) − δx(o)

)− (
δo(y) − δo(o)

)= δxy + 1 − δxo − δyo. �
Lemma 3.13. The operator � is Hermitian on H.

Proof. Note that (3.8) is symmetric in x and y, and R-valued. Thus

〈�vx, vy〉H = 〈vy,�vx〉H = δyx + 1 − δxo − δyo

= δxy + 1 − δxo − δyo = 〈vx,�vy〉H. �
Lemma 3.14. The action of � on dom Q passes to the quotient: [�u]Q = �[u]Q for any u ∈
dom Q.

Proof. This is equivalent to showing that the kernel of Q is invariant under the action of �.
Suppose that ψ = ∑

z∈F ξzvz is an element of ker Q, and that F is finite. Then 〈ψ,ϕ〉H = 0 for
every ϕ ∈ H, so with ϕ = �vx (which is well defined by Remark 3.10), Lemma 3.13 gives 0 =
〈ψ,�vx〉H = 〈�ψ,vx〉H , for every x ∈ X, so that �ψ ∈ ker Q by Corollary 3.7. The conclusion
follows. �
Lemma 3.15. The operator � given in Definition 3.5 is semibounded as in Definition 1.5.

Proof. If u ∈ dom�, then u =∑
x∈F ξxvx for some finite F ⊆ X\{o} by (3.6) and

〈u,�u〉H =
∑

x,y∈F

ξxξy〈vx,�vy〉H =
∑

x,y∈F

ξxξy(δxy + 1)

=
∑
x∈F

|ξx |2 +
∣∣∣∣∑
x∈F

ξx

∣∣∣∣
2

� 0, (3.9)

by Lemma 3.12. �
Remark 3.16. In fact, one can draw a much stronger conclusion than just semiboundedness from
Lemma 3.15: note from the proof that 〈u,�u〉H = 0 implies

∑ |ξx |2 = 0 and thus u = 0.

Lemma 3.17. Fix y ∈ X and consider ϕ(x) := 〈vx, vy〉H as a function of x on X. Let �x denote
the application of � with respect to the x variable. Then

�x〈vx, vy〉H = 〈�vx, vy〉H + δxo − 1. (3.10)
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Proof. Note that ϕ(x) = vy(x) − vy(o) for each fixed y, so that ϕ = vy in H. Then ϕ ∈ dom�

and

�x〈vx, vy〉H = �x

(
vy(x) − vy(o)

)= �xvy(x) = δy(x) − δy(o) = δxy − δyo.

Now (3.10) follows by Lemma 3.12 and Lemma 3.13. �
The authors are grateful to the referee for suggesting the above streamlined version of the

proof.

3.3. Foundations of reproducing kernel Hilbert spaces

This subsection aims to give some brief historical context for Section 3 in general, and
Lemma 3.21 in particular.

Definition 3.18. One says M : X × X → C is a positive semidefinite (psd) function iff

∑
x∈F

ξxM(x, y)ξy � 0, ∀ξ = {ξx}x∈X, (3.11)

whenever F ⊆ X is finite. Informally, we describe this condition by saying “M is psd on X”.
Similarly, one says M : X × X → C is positive definite (pd) iff the inequality in (3.11) is strict
for all finitely supported nonzero sequences c.

The theory of positive (semi)definite functions is broad and powerful (see, e.g. [5]) but we are
interested primarily in two closely related theorems stemming from the work of von Neumann
and Kolmogorov. The first one (Theorem 3.19) is a generalization and amalgamation of some
results of [13, §5–6]. The second one (Theorem 3.20) adds the slightly stronger hypothesis of
pd (instead of psd) and is able to draw a much stronger conclusion: one is able to produce a
Gaussian measure on the resulting space. The following result is the foundation for the study of
reproducing kernel Hilbert spaces as developed by Aronszajn [1,28].

Theorem 3.19. Given a psd function M on X, there exists a Hilbert space H with an inner
product 〈·,·〉H and a function v : X → H such that

(i) M(x,y) = 〈vx, vy〉H for all x, y ∈ H, and
(ii) cl spanvx = H.

Moreover, v : X → H is unique up to unitary equivalence when (i) and (ii) are satisfied. In fact,
vx is defined to be the equivalence class of M(·, x) under a certain quotient map.

Sketch of proof. The vector space of all finite linear combinations
∑

ξxM(·, x) can be made
into a pre-Hilbert space by defining the sesquilinear form

〈 ∑
axM(·, x),

∑
byM(·, y)

〉
M

:=
∑

axM(x, y)by,
x∈F y∈F x,y∈F
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where F is a finite subset of X containing the support of a and b. One can verify that this
satisfies a generalized Cauchy–Schwarz inequality, and one can therefore obtain a Hilbert space
by modding out by the kernel of M and taking the completion. �

Theorem 3.20 is an alternative approach to this construction (see [28]) which allows one to
realize the Hilbert space H of Theorem 3.19 as L2(Ω,P). This version is more probabilistic in
flavour; in fact, Kolmogorov’s consistency construction is lurking in the background.

Theorem 3.20. Given a psd function M on X × X, there exists a probability space (Ω,P) and a
collection of random variables {Xx}x∈X such that for all x, y ∈ X,

E(Xx) = 0 and E(Xx, Xy) = M(x,y). (3.12)

Moreover, if M is pd, then P can be taken to be Gaussian.

Lemma 3.21 can be considered as a (somewhat trivial) converse of Aronszajn’s theorem, and
will be useful in Section 5.

Lemma 3.21. Given any function v : X → H mapping X into a Hilbert space, the function
defined by M(x,y) := 〈v(x), v(y)〉H is pd on X.

Proof. If ξ = {ξx}x∈X is not identically 0, then for any finite F ⊆ X,

∑
x∈F

∑
y∈F

ξxξy

〈
v(x), v(y)

〉
H =

〈 ∑
x∈F

ξxv(x),
∑
y∈F

ξyv(y)

〉
H

= ‖w‖2
H > 0, (3.13)

where w ∈ H is the function defined by w =∑
x∈F ξxv(x). Note that the final inequality is strict

by Lemma 3.11. �
4. The Laplacian as an operator on the energy space

In this section, we introduce the setting of a resistance network (G, c). There are a couple of
different (but very natural) Hilbert spaces of functions defined on such a domain, both of which
are important for understanding the underlying network. The study of a network is inextricably
linked to the study of the associated Laplace operator: note that if A is the adjacency matrix of a
network, then as matrices, � = cI − A; see (4.6).

This section aims to compare the �2(G) theory of � (as discussed in Section 2) with the be-
havior of � on a second Hilbert space of functions naturally associated to the network: the energy
space HE ; see [12,14,15,17] and also the references [23,24,26,30].2 It is defined in Lemma 4.4
from an energy form E on functions on (G, c) defined in Definition 4.2.

The results of Section 2 imply that the network Laplacian is essentially self-adjoint as an
operator on �2(G), i.e., on �2(G,μ) where μ is counting measure; see also [21,22]. However,
the action of the Laplacian on HE is markedly different. In particular, it is not always essentially

2 HE is different from the space D discussed in [30] (also called (E , FV ) in [24, Prop. 2.19]), but the two are closely
related; see [12, §4.1], for example.
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self-adjoint as an operator on HE , in sharp contrast to Theorem 2.8. Example 4.8 illustrates this
phenomenon with an explicitly computed defect eigenvector and (nonzero) deficiency indices.

It also turns out that there is no natural onb for HE ; the natural candidate would be the Dirac
masses {δx}x∈G, but these are not orthogonal and typically don’t even have dense span in HE .
Consequently, we rely on a reproducing kernel {vx}x∈G\{o}, as developed axiomatically in the
previous section. In fact, this is part of the motivation behind Section 3.

Due in part to their close relation with Markov chains, there is a massive literature on resis-
tance networks (not always using this terminology). Many studies use Hilbert space techniques,
but almost all of these focus on �2(G,μ); see [7,30] and the references therein; other articles use
methods from potential theory and discrete harmonic analysis [23,24]. See also [26, §9] for an
alternative view on the energy space, presented in terms of an �2 space of functions on the edges
of G.

4.1. Networks and the energy space

Definition 4.1. A resistance network is a connected weighted graph (G, c). Here G = (G0,G1)

is a graph with a countable vertex set G0, and at most one edge e ∈ G1 between any two vertices.
From this point onward, we write x ∈ G to indicate that x ∈ G0. The adjacency relation on G

is determined entirely by the conductance function c : G0 × G0 → [0,∞), a nonnegative and
symmetric real-valued function denoted cxy = c(x, y). We say x, y ∈ G are connected by an
edge of weight cxy if and only if cxy > 0; in this case, we write x ∼ y. Vertices may not have
finite valency, but they must have finite total conductance:

c(x) :=
∑
y∈G

cxy < ∞. (4.1)

We also assume cxx = 0 for every x ∈ G.

In Definition 4.1, the term connected means that for all x, y ∈ G, there is a finite sequence
{x = x0, x1, . . . , xn = y} ⊆ X such that cxixi−1 > 0 for i = 1, . . . , n. There is a bijective cor-
respondence between the class of resistance networks and the class of irreducible reversible
Markov chains; the correspondence is given by considering G0 as the state space and defining
the transition probability by p(x, y) = cxy/c(x), for vertices (states) x and y.

Definition 4.2. For functions u,v on a resistance network, one can define the (sesquilinear)
energy form

E (u, v) = 1

2

∑
x,y∈G

cxy

(
u(x) − u(y)

)(
v(x) − v(y)

)
(4.2)

with domain dom E := {u: G → C
.
.
. E (u,u) < ∞}. One says that E (u) := E (u,u) is the energy

of u.

It is clear from (4.2) and the connectedness of the network that E (u) = 0 iff u is constant, so
ker E = C1. Therefore, we define an equivalence relation by u ∼ v iff u(x) − v(x) = k for some
fixed k ∈ C.
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Lemma 4.3. Under the above equivalence relation, and with ‖ · ‖E = √
E (·,·), the quotient

HE := dom E
ker E = {

u + C1
.
.
. u : G → C and ‖u‖E < ∞}

(4.3)

is a Hilbert space, and the elements of HE are functions on G modulo constants.

Proof. It can be checked directly that the above collection of (equivalence classes of) functions
on G is complete via an isometric embedding into a larger Hilbert space as in [26,27] or by a
standard Fatou’s lemma argument as in [30]. �
Definition 4.4. The energy space is the Hilbert space HE with inner product 〈u,v〉E := E (u, v).

Theorem 4.5. The energy space is a special case of the axiomatic presentation in Section 3.

Proof. Note that (4.2) gives

〈δx, δy〉E = −cxy, and 〈δx, δx〉E = c(x). (4.4)

In particular, the condition c(x) < ∞ ensures δx ∈ HE for every x ∈ G, and so Axiom 2 is satis-
fied. To see that Axiom 3 is satisfied, one can argue as in [12, Lem. 2.4]: since G is connected,
choose a path {xi}ni=0 with x0 = y, xn = x and cxi ,xi−1 > 0 for i = 1, . . . , n, and the Cauchy–
Schwarz inequality yields

|Lx,yu|2 = ∣∣u(x) − u(y)
∣∣2 =

∣∣∣∣∣
n∑

i=1

√
cxi ,xi−1

cxi ,xi−1

(
u(xi) − u(xi−1)

)∣∣∣∣∣
2

� k2 E (u),

for k =
(

n∑
i=1

c−1
xi ,xi−1

)1/2

.

Consequently Lemma 3.4 applies and we have a relative reproducing kernel {vx}x∈G ∈ HE , as
in Definition 3.3, given by vx := vx,o. Although the elements of HE are equivalence classes,
computations can be performed using representatives whenever these computations are indepen-
dent of the choice of representative. Abusing notation, we may take the function u to be the
representative of u ∈ HE satisfying u(o) = 0.3 �
Remark 4.6. Since one may add a constant function without changing the energy, dom E =
H ⊕ C. Then, as in [26, Ex. 9.6(b)], one has

HE = H ⊕ C

C
. (4.5)

3 After an initial draft of this paper was complete, we discovered that researchers studying metrized graphs use a
similar object; in [3,4] this is called the “j -function” and is roughly given by jz(x, y) = vy,z(x). The two objects do not
precisely coincide because for metrized graphs, x, y, z may be points in the interior of an edge, as edges are isometric to
intervals in that context.
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Upon combining Definition 3.5 with (4.2), one obtains the Laplacian as the (graph) closure of
the operator defined pointwise on the dense domain dom� = span{1, {vx}x∈X\{o}} by

(�u)(x) =
∑
y∼x

cxy

(
u(x) − u(y)

)
. (4.6)

Remark 4.7 (The meaning of �u). Note that �u is a function on G, not an equivalence class of
functions (the differences in (4.6) specify the value of �u(x) unambiguously).

It is also clear that � is Hermitian on HE ; note that Corollary 3.13 holds in this context. It
is also the case that � commutes with conjugation, and this ensures that the deficiency indices
of � on HE will be equal. Section 4.2 discusses a situation in which � on HE has deficiency
indices (1,1).

Using the standard onb {δx}x∈G for �2(G), and the matrix A with entries ax,y = −cxy , formula
(4.6) is equivalent to matrix multiplication:

�u = Au, (4.7)

so that ax,y defines a matrix Laplacian on �2(X) in the sense of Definition 2.5. In fact, the only
real difference between Definition 4.1 and Definition 2.5 is the addition of the connectedness
condition, which appears in this section to ensure that the kernel of the energy form contains
only (globally) constant functions.

4.2. The Laplacian can fail to be essentially self-adjoint on HE

Example 4.8 (The geometric integers). For b > 1, consider the network (Z+, bn) consisting of
the nonnegative integers with an edge of conductance bk connecting the vertex k − 1 to the
vertex k:

• b • b2 • b3 • b4 · · ·
0 1 2 3

See [12–15,17].

Proposition 4.9 (Defect on the geometric integers). As an operator on the energy space of the
network (Z+, bn), the Laplacian is not essentially self-adjoint.

Proof. We will explicitly construct a function u which has finite energy and which satisfies
�u(n) = −u(n) at every vertex n in the network. To this end, recursively define a system of
polynomials {ϕn} and {ψn} in the variable r by

[
ϕn

ψn

]
=
[

1 1

rn 1 + rn

]
· · ·

[
1 1

r2 1 + r2

][
1 1

r 1 + r

][
0

1

]
. (4.8)

Putting r = 1
b

, the desired function u is defined by u(n) := ψn(1/b). Note that ϕn = ϕn−1 +ψn−1
and ψn = ψn−1 + rnϕn. Hence

u(n) − u(n − 1) = ψn

( 1 )− ψn−1
( 1 )= ψn−1

( 1 )+ rnϕn

( 1 )− ψn−1
( 1 )= rnϕn

( 1 )

b b b b b b
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and therefore, suppressing the evaluation at the fixed value r = 1/b, we have

ϕn = bn
(
u(n) − u(n − 1)

)
. (4.9)

Consequently, �u(n) = ϕn − ϕn+1 = −ψn = −u(n) implies that �u = −u. The proof will be
complete once we show that u ∈ HE , which is carried out in Lemma 4.11. �

We will need the following lemma for the proof of Lemma 4.11.

Lemma 4.10. There is an m such that

ϕn � nm, and ψn � (n + 1)m − nm for all n ∈ Z+, (4.10)

where ϕn and ψn are the polynomials defined in (4.8).

Proof. We prove both bounds simultaneously by induction, so assume both bounds of (4.10)
hold for n − 1. The estimate for ϕn = ϕn−1 + ψn−1 is immediate from the inductive hypotheses.
For the ψn estimate, choose an integer m so that

m(m − 1) � max
{
t2rt .

.

. t � 0
}=

(
2

e logb

)2

.

Then n2rn � m(m − 1) for all n, so

2 + rn � 2 + m(m − 1)

n2
�
(

n − 1

n

)m

+
(

n + 1

n

)m

,

by using the binomial theorem to expand ( n±1
n

)m = (1 ± 1
n
)m. Multiplying by nm gives

(
nm − (n − 1)m

)+ rnnm � (n + 1)m − nm,

which is sufficient because the left side is an upper bound for ψn = ψn−1 + rnϕn. �
Lemma 4.11. The defect vector u(n) := ψn(

1
b
) has finite energy and is bounded.

Proof. Applying Lemma 4.10 to the formula for E yields

E (u) =
∞∑

n=1

bn
(
u(n) − u(n − 1)

)2 =
∞∑

n=1

rnϕ2
n �

∞∑
n=1

rnn2m = Li−2m(r) < ∞,

since a polylogarithm indexed by a negative integer is continuous on R, except for a single pole
at 1 (but recall that r ∈ (0,1)).

To see that u is bounded, combine (4.9) and (4.10) to obtain bn(u(n) − u(n − 1)) � nm, for
some fixed m, whence the sequence of increments is summable in much the same way:
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Fig. 1. A Mathematica plot of the defect vector u of Example 4.8 and Lemma 4.11. The left plot shows u(x) for x = 0,

1, . . . ,10, and the plot on the right shows data points for u(x), x = 10,11,12, . . . .

lim
n→∞u(n) − u(0) =

∞∑
n=1

(
u(n) − u(n − 1)

)
�

∞∑
n=1

rnnm < ∞. �

Lemma 4.11 ensures that the defect vector is bounded; in the example in Fig. 1, the defect
vector has a limiting value of ≈ 4.04468281, although the function value does not exceed 4 until
x = 10. The first few values of the function are

u = [ 3
2 , 17

8 , 173
64 , 3237

1024 , 114 325
32 768 , 7 774 837

2 097 152 , 1 032 268 341
268 435 456 , 270 040 381 877

68 719 476 736 , 140 010 315 667 637
35 184 372 088 832 , . . .

]
≈ [1.5,2.125,2.7031,3.1611,3.4889,3.7073,3.8455,3.9296,3.9793,4.0080, . . .].

5. Finite approximants

As mentioned in the previous section, when considering � as an operator on a reproducing
kernel energy space H, it is not possible to use the matrix representation of (4.7) because {δx}x∈X

is not an onb for H. Therefore, we change to a different representation of H as laid out in
Section 3.

In this section, we return to the setting of Section 3, where X is any (infinite) set, Q is
a quadratic form on functions on X, and H = dom Q/ker Q is a Hilbert space with (rela-
tive) reproducing kernel {vx}x∈X . For studying infinite sets X, it will be helpful to consider
a filtration by finite subsets, partially ordered by inclusion. With this aim, we pick a finite
subset F ⊆ X and study the “restriction” of M and functions u to this subset. Note that we
do not restrict the support of the functions under consideration: we restrict the index set of
the representing functions {vx}x∈X , in the spirit of Karhunen–Loève; see [2]. This is akin
to using cutoff functions as Fourier multipliers, and leads to a form of spectral reciprocity
between the associated Laplace operator, and its “inverse” M , in the sense described in Sec-
tion 5.1. The exact relationship between M (actually, its diagonalization D) and � is made
precise in Corollary 5.20; see also Remark 5.25. The application we have in mind is a re-
sistance network as discussed in Section 4 but all results are phrased in the context of the
reproducing kernel Hilbert space of Section 3 so as to keep the scope of discussion more gen-
eral.
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Definition 5.1. Let V := span{vx}x∈X\{o} and V (F ) := span{vx

.

.

. x ∈ F }. We also write �2(F ) for
the subspace of functions in �2(X) whose support is contained in F . This may seem trivial when
F is finite, but the notation helps distinguish between the two different inner products in use.

Definition 5.2. Define Φ : �2(X) → H on domΦ = span{δx}x∈X by Φδx = vx .

Remark 5.3. The operator Φ is typically not closable. To see this, we show why the adjoint is
not typically densely defined. First, pick ξ ∈ span{δx} and u ∈ V , and compute Φ∗:

〈
ξ,Φ∗u

〉
�2 = 〈Φξ,u〉H =

∑
x∈X

ξx〈vx,u〉H =
∑
x∈X

ξx

(
u(x) − u(o)

)
.

So for an equivalence class u ∈ H, note that Φ∗u is the representative of u that vanishes at o. For
u ∈ H, let us denote by u(0) the representative of u specified by u(o) = 0, so that Φ∗u = u(0).
Then

domΦ∗ = {
u ∈ H .

.

. u
(0) ∈ �2(X)

}
.

It is easy to see that this class is not dense in H; see [12] for examples in the case H = HE .

Definition 5.4. For a finite set F ⊆ X\{o}, we have Φξ =∑
x∈X ξ(x)vx , for all ξ ∈ V (F ). Define

M to be the matrix of Φ∗Φ , that is,

Mxy = 〈
δx,Φ

∗Φδy

〉
�2 = 〈vx, vy〉H, ∀x, y ∈ X, (5.1)

and let MF := M|F×F be the submatrix of M defined by deleting all rows and columns corre-
sponding to points x /∈ F , i.e., MF is an |F | × |F | matrix with entries

(MF )xy = 〈vx, vy〉H, ∀x, y ∈ F. (5.2)

In general, one may have vx ∈ V (F ) with support extending outside of F ; examples are given
in [13].

Note that since ξ ∈ �2(F ) is finitely supported,

Mξ(x) =
∑
y∈F

Mx,yξ(y) =
∑
y∈F

〈vx, vy〉Hξ(y) =
〈
vx,

∑
y∈F

ξ(y)vy

〉
H

= 〈vx,Φξ 〉H = Φξ(x) − Φξ(o). (5.3)

Definition 5.5. Denote the spectrum of MF by ΛF = {λF
j } for some enumeration j = 1,

2, . . . , |F |. Note that ΛF > 0 by Lemma 3.21 and that M is diagonalizable with eigenfunctions
ξj = ξF

j ∈ �(F ) = �2(F ). That is, the spectral theorem provides an orthonormal basis (onb) {ξF
j }

with

MF ξj = λj ξj for each j,F. (5.4)

For convenience, we often suppress the index and write (5.4) as MF ξλ = λξλ.
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Definition 5.6. For a finite F ⊆ X, and MF ξλ = λξλ as above, define

uλ := 1√
λ

∑
x∈F

ξλ(x)vx. (5.5)

Lemma 5.7. The operator ΨF : �2(F ) → V (F ) defined by ΨF (ξλ) = uλ is unitary, and conse-
quently {uλ}λ∈ΛF

is an orthonormal basis in V (F ).

Proof. For x, y ∈ F , compute

〈uj ,uk〉H = 1√
λjλk

∑
x,y∈F

ξj (x)ξk(y)〈vx, vy〉H = 1√
λjλk

∑
x∈F

ξj (x)(MF ξk)(x),

and since ξk is an eigenvector, this continues as

〈uj ,uk〉H =
√

λk√
λj

∑
x∈F

ξj (x)ξk(x) =
√

λk

λj

〈ξj , ξk〉�2 = δjk,

where δjk is the Kronecker delta, since {ξλ} is an onb for �2(F ). �
Definition 5.8. By Lemma 5.7, we may let PF be the projection to span{uλ}λ∈ΛF

. In the Dirac
notation, this is

PF =
∑

λ∈ΛF

|uλ〉〈uλ|. (5.6)

Note that PF is projection to V (F ).

Lemma 5.9. With respect to the onb {uλ}, one has

PF vx =
∑

λ∈ΛF

λ1/2ξλ(x)uλ, for all x ∈ F. (5.7)

Proof. Let x ∈ F . Then compute

PF vx =
∑

λ∈ΛF

|uλ〉〈uλ|vx〉 =
∑

λ∈ΛF

〈uλ, vx〉Huλ =
∑

λ∈ΛF

1√
λ

∑
y∈F

ξλ(y)〈vy, vx〉Huλ

by (5.6) followed by (5.5). Continuing,

PF vx =
∑

λ∈ΛF

1√
λ

(MF ξλ)(x)uλ =
∑

λ∈ΛF

λ√
λ

ξλ(x)uλ,

since ξλ is an eigenvector. Note that λ ∈ R+, since M is positive semidefinite by assumption. It
remains to observe that PF vx = vx for x ∈ F , but this follows from Definition 5.8. �
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Remark 5.10. In the language of Theorem 3.19, Eq. (5.7) takes the following form:

v =
∑

λ∈ΛF

√
λ(ξλ ⊗ uλ) (5.8)

where {ξλ} is an onb for �2(F ) and {uλ} is an onb for V (F ). The significance of this symmetric
expression of v is that it allows us to compute a norm in H (where the sum would be over
x ∈ F ) by instead computing an �2 norm (where the sum is over λ ∈ ΛF ). For an example, see
Corollary 5.24.

In [15], the authors show that for H = HE one can construct a Gel’fand triple SE ⊆ HE ⊆ S ′
E ,

isometrically embed HE ↪→ L2(S ′
E ,P). Here SE is a space of “test functions” which is dense in

HE , but comes equipped with a strictly finer Fréchet topology, and S ′
E is a space of “distribu-

tions” obtained by taking the dual with respect to this topology. Elements u ∈ HE can then be
extended to functions on S ′

E via ũ(ξ) = 〈u, ξ 〉E for ξ ∈ S ′
E . As P is a probability measure, one

can then interpret {vx}x∈G as a stochastic process, i.e., a system of random variables indexed by
the vertices of the underlying graph. In this context, (5.8) becomes an instance of the Karhunen–
Loève decomposition (see, e.g. [2]) of a stochastic process into its random and deterministic
components:

ṽx(ξ) =
∑

λ∈ΛF

√
λ
(
ξλ(x) ⊗ ũλ(ξ)

)
x ∈ G, ξ ∈ (

S ′
E ,P

)
. (5.9)

In fact, it turns out that {ũλ}λ∈ΛF
is a system of independent identically distributed Gaussian

N(0,1) random variables, for any finite F ⊆ X. See also Section 5.2 for more relations to
Karhunen–Loève.

5.1. Spectral reciprocity

In this section, we explore the relationship between M and �. In particular, the Spectral
Reciprocity Theorem (Theorem 5.16) shows how M and � are (almost) inverse operators, and
explains why the eigenvalues of M are (almost) the reciprocals of the eigenvalues of �.

Definition 5.11. Denote the diagonalization of MF by

DF :=
⊕
λ∈ΛF

λPuλ =

⎡
⎢⎢⎣

λ1
λ2

. . .

λ|F |

⎤
⎥⎥⎦ , (5.10)

where Puλ is projection to span{uλ}λ∈ΛF
. Note that D−1

F is a well-defined operator on �2(F ) of
rank |F | < ∞.

Definition 5.12. Let P o
F : H → H be the projection of δo to V (F ). That is, P o

F = |PF δo〉〈PF δo|
in the Dirac notation.

Definition 5.13. If {ξλ} is the onb of eigenvectors of MF , denote the expectation of ξλ by

E(ξλ) =
∑

ξλ(x) = 〈XF , ξλ〉�2 . (5.11)

x∈F
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Lemma 5.14. If δo is a Dirac mass at the origin, the expansion of PF δo with respect to {uλ} is
given by

PF δo = −
∑

λ∈ΛF

E(ξλ)√
λ

uλ. (5.12)

Proof. Using PF = P ∗
F , (5.5), and the fact that uλ ∈ V (F ), we compute the coefficients:

〈uλ,PF δo〉H = 〈PF uλ, δo〉H = 〈uλ, δo〉H = 1√
λ

∑
x∈F

ξλ(x)〈vx, δo〉H = − 1√
λ

∑
x∈F

ξλ(x),

where the last line follows by Lemma 3.9, since x �= o. �
Definition 5.15. The compression of � to F is the restricted action of the operator � to V (F ),
and it is given by PF �PF .

Theorem 5.16 (Spectral reciprocity). If F ⊆ X\{o} is nonempty and finite, then

PF �PF = ΦD−1
F Φ∗ + P o

F . (5.13)

Proof. For λ,κ ∈ ΛF , we have 〈uλ,PF �PF uκ 〉H = 〈uλ,�uκ 〉H because uκ ∈ V (F ). Then

〈uλ,PF �PF uκ 〉H = 1√
λκ

∑
x,y∈F

ξλ(x)ξκ(y)〈vx,�vy〉H

= 1√
λκ

∑
x,y∈F

ξλ(x)ξκ(y)(δxy + 1) (5.14)

by (5.5) and (3.8). The computation of (5.14) continues as

= 1√
λκ

∑
x∈F

ξλ(x)ξκ(x) + 1√
λ

∑
x∈F

ξλ(x)
1√
κ

∑
y∈F

ξκ(y)

= 1√
λκ

∑
x∈F

ξλ(x)ξκ(x) + 1√
λ

E(ξλ)
1√
κ

E(ξκ). (5.15)

Since uλ is in domΦ∗ automatically for finite F , the right side of (5.13) is

〈
uλ,

(
ΦD−1

F Φ∗ + P o
F

)
uκ

〉
H = 〈

Φ∗uλ,D
−1
F Φ∗uκ

〉
�2(F )

+ 〈
uλ,P

o
F uκ

〉
H,

which matches with the right side of (5.15), by (5.12). This verifies (5.13) on the onb of
Lemma 5.7, and hence for all of V (F ). �
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Remark 5.17. We refer to Theorem 5.16 as the Spectral Reciprocity Theorem because it relates
the eigenvalues of � to the reciprocal eigenvalues of its inverse, on any finite F ⊆ X.

Suppose one writes the matrix for � as in Definition 2.5, so that rows and columns are in-
dexed by points of X. Let �̃ be the matrix which results from deleting the row and column
corresponding to a chosen point o. Corollary 5.20 makes precise the well-known statement that
one can invert the Laplacian after deleting the row and column corresponding to a point o.4 In
particular, without deleting the row and column of o, one is forced to contend with an auxiliary
term 1 in (3.8) (which corresponds to the projection P o = |o〉〈o| to the 1-dimensional subspace
spanned by δ0).

Lemma 5.18. For every nested sequence of finite sets {Fn}n∈N with
⋃

Fn = X\{o}, the limit of
PFn�PFn exists and with dom� as in (3.6),

� = lim
n→∞PFn�PFn, (5.16)

in the strong operator topology, that is, limn→∞ ‖PFn�PFnv − �v‖H for all v ∈ dom�.

Proof. Let f ∈ dom� so that there is some finite set F ⊆ X\{o} for which

f =
∑
x∈F

ξxvx.

Without loss of generality, let {Fn}∞n=1 be an exhaustion of X\{o} with F ⊆ F1. Then PF f = f ,
and

PFn�PFnf = PFn�f
n→∞−→ �f,

since PFn increases to the identity operator:

‖PFn�PFnf − �f ‖H = ∥∥(PFn − I)�f
∥∥

H
n→∞−→ 0. �

Definition 5.19. Let P o := |δo〉〈δo| = projH[δo] be the rank-1 projection on H defined by
〈u,P ow〉H = 〈u, δo〉H〈δo,w〉H.

Corollary 5.20. The limit �−P o = limn→∞ ΦD−1
Fn

Φ∗ exists, for any exhaustion {Fn} of X\{o}.

Proof. Since arguments exactly analogous to those in Lemma 5.18 give P o
Fn

n→∞−→ P o, we have

lim
n→∞ΦD−1

Fn
Φ∗ = lim

n→∞PFn�PFn + lim
n→∞P o

Fn
= � − P o,

by applying Theorem 5.16 and then Lemma 5.18. �
4 Recall that if M is a Hermitian matrix acting on a finite-dimensional Hilbert space H , then the restriction of M to the

orthocomplement of the zero eigenspace is invertible.
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,

5.2. Spectral measures

Recall from Definition 5.13 that E(ξj ) =∑
x∈F ξj (x) = 〈XF , ξj 〉�2 , and that from Lemma 5.14

the expansion of PF δo with respect to {uλ} is given by

PF δo = −
∑

λ∈ΛF

E(ξλ)√
λ

uλ. (5.17)

Definition 5.21. Since PF �PF = D−1
F + PF δo is the J × J matrix TF whose (j, k)th entry is

given by

τj,k = δj,k

λj

+ E(ξj )E(ξj )√
λjλk

,

denote the spectrum of this matrix TF = [τj,k] by SF = spec(TF ) = {σF
j }Jj=1.

Remark 5.22. In Definition 5.21, it is important to note that τj,k, ξj , and λj all depend on the
choice of F . However, for ease of notation we suppress this dependence and also henceforth
write σj = σF

j .

Recall from Definition 5.5 that ΛF = spec(MF ) = {λJ }Jj=1.

Corollary 5.23. For any finite subset F ⊆ X\{o} with |F | = J , one has 1
J

∑J
j=1 E(ξj )

2 = 1.

Proof. Since XF coincides with the constant vector 1 on F , we use Pξj
u = 〈ξj , u〉�2ξj to com-

pute directly

∑
j

∣∣E(ξj )
∣∣2 =

∑
j

∣∣〈XF , ξj 〉�2

∣∣2 =
∑
j

‖Pξj
XF ‖2 = ‖XF ‖2

2 = |F | = J. �

Corollary 5.24. For any finite subset F ⊆ X\{o} with |F | = J , one has J
maxλ

� ‖P o
F ‖ � J

minλ
.

Proof. Using Corollary 5.23 and Definition 5.12, ‖P o
F ‖ = ‖PF δo‖2

H = ∑J
j=1 E(ξj )

2 = J . See
Remark 5.10. Then the double inequality follows by estimating the largest (but clearly finite)
eigenvalue and the smallest (but clearly strictly positive) eigenvalue. �
Remark 5.25. When � is not essentially self-adjoint, the presence of P o

F (as in (5.13), for exam-
ple) makes it impossible to obtain self-adjoint extensions of � via a filtration by finite subsets.
This obstacle can only be overcome by passing to spectral measures. If dom� is as in (3.6), then
the spectral measure of some self-adjoint extension of � comes from a weak-∗ limit of linear
combinations of equally weighted Dirac masses:

μF = 1

J

J∑
δσj

. (5.18)

j=1
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Here, μF refers to the spectral representation of PF �PF , and we are relying on standard
tools from the literature. Indeed, approximation of measures with the use of spectral sampling
is a versatile and powerful tool. For approximation in the weak-∗ topology on measures (as in
the present context), see the excellent reference book [6] for details. When applied to spectral
measures, these approximations were first studied in the book by M. Stone; see [31, Ch. X]. The
approach in [31] is especially amenable to our present applications: a main theme is the study of
unbounded operators in Hilbert space, realized concretely as infinite matrices. This is illustrated
in the following diagram:

PF �PF
F→X

�
⊆

�̃

μF
weak-∗

μ̃

(5.19)

In the limit of (5.18) as F → X, may μF become a smooth measure. The key point is that
considering the limit of PF �PF as F → X does not take one far enough. However, consideration
of the spectral measures μF of PF �PF shows that each weak-∗ limit μ̃ is the spectral measure
of some self-adjoint extension �̃ of �, and by general theory, every self-adjoint extension of �

arises in this way.
In the preceding discussion, F → X refers implicitly to a limit with respect to an exhaustion

{Fn}n∈N, where Fk ⊆ Fk+1 and
⋃∞

n=1 Fk = X\{o}. Note that the limit � = limF→X PF �PF is
unique (see Lemma 5.18) and hence independent of the choice of exhaustion {Fn}n∈N. However,
the nonuniqueness of weak-∗ limits corresponds to the fact that μ̃ = limF→X μF may depend
on the choice of exhaustion. Different weak-∗ limits may correspond to different self-adjoint
extensions �̃ of �.

5.3. Spectral reciprocity for balanced functions

Balanced functions are functions which sum to 0. In the context of resistance networks (see
Section 4), a balanced function is the divergence of a current flow with no transient component;
these functions are mentioned briefly in [30, §III.3].

Definition 5.26. A function ξ : X → C is balanced iff ξ has finite support and
∑

x∈X ξ(x) = 0.
Denote the space of such functions by B. For any finite F ⊆ X\{o}, let BF denote the collection
of functions in B whose support is contained in F .

Recall from Definition 5.1 that V := span{vx}x∈X\{o} and V (F ) := span{vx

.

.

. x ∈ F }, and from
Definition 5.2 that Φ : �2(X) → H is given by Φ(δx) = vx on domΦ = span{δx}x∈X .

Definition 5.27. Denote the subspace of V with balanced coefficients by

V0 := Φ(B) = {
Φ(ξ)

.

.

. ξ ∈ B
}
, (5.20)

and similarly for V0(F ) := Φ(BF ) = {Φ(ξ)
.
.
. ξ ∈ BF }.
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The following curious fact can be found in most introductory books on functional analysis.

Proposition 5.28. Let A be a topological vector space, and let A0 be a dense linear subspace. If
f is a linear functional on A0, then kerf is dense in A if and only if f is discontinuous.

Lemma 5.29. B is dense in �2(X) if and only if X is infinite.

Proof. Define f : B → C by f (ξ) = ∑
x∈X ξx . Note that X is finite if and only if the constant

function 1 is in �2(X), which (by Riesz’s Lemma) holds if and only if f is continuous on �2(X).
The result now follows from Proposition 5.28. �

The next lemma indicates how Φ “intertwines” the spectral densities of � and M .

Lemma 5.30. For all ξ ∈ B, one has 〈Φ(ξ),�Φ(ξ)〉H = ‖ξ‖2
�2 and 〈ξ,Mξ 〉�2 = ‖Φ(ξ)‖2

H, and
hence

〈Φ(ξ),�Φ(ξ)〉H
‖Φ(ξ)‖2

H
= ‖ξ‖2

�2

〈ξ,Mξ 〉�2
. (5.21)

Proof. The first identity is immediate for ξ ∈ B by (3.9). For the second, note that

∥∥Φ(ξ)
∥∥2

H =
〈∑

x∈X

ξ(x)vx,
∑
y∈X

ξ(y)vy

〉
H

=
∑
x∈X

∑
y∈X

ξ(x)ξ(y)Mx,y = 〈ξ,Mξ 〉�2 . �

Definition 5.31. We say that � has a spectral gap α > 0 iff

α‖ψ‖2
H � 〈ψ,�ψ〉H, for all ψ ∈ V0. (5.22)

Theorem 5.32 (Spectral gap). � has a spectral gap α > 0 if and only if (5.1) defines a bounded
self-adjoint operator M : �2(X) → �2(X) with ‖M‖ � 1√

α
.

Proof. This follows immediately when either side of (5.21) is bounded from below by
α > 0. �
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