234 research outputs found

    Comment on ``Nonuniversal Exponents in Interface Growth''

    Full text link
    Recently, Newman and Swift[T. J. Newman and M. R. Swift, Phys. Rev. Lett. {\bf 79}, 2261 (1997)] made an interesting suggestion that the strong-coupling exponents of the Kardar-Parisi-Zhang (KPZ) equation may not be universal, but rather depend on the precise form of the noise distribution. We show here that the decrease of surface roughness exponents they observed can be attributed to a percolative effect

    Non-perturbative renormalization of the KPZ growth dynamics

    Full text link
    We introduce a non-perturbative renormalization approach which identifies stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of rough surfaces. The usual limitations of real space methods to deal with anisotropic (self-affine) scaling are overcome with an indirect functional renormalization. The roughness exponent α\alpha is computed for dimensions d=1d=1 to 8 and it results to be in very good agreement with the available simulations. No evidence is found for an upper critical dimension. We discuss how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let

    Universality and Crossover of Directed Polymers and Growing Surfaces

    Full text link
    We study KPZ surfaces on Euclidean lattices and directed polymers on hierarchical lattices subject to different distributions of disorder, showing that universality holds, at odds with recent results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover toward the universal values of the exponents and verify that the exponent governing such crossover is universal too. In the limit of a 1+epsilon dimensional system we obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let

    Upper critical dimension, dynamic exponent and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation

    Full text link
    We study the mode-coupling approximation for the KPZ equation in the strong coupling regime. By constructing an ansatz consistent with the asymptotic forms of the correlation and response functions we determine the upper critical dimension d_c=4, and the expansion z=2-(d-4)/4+O((4-d)^2) around d_c. We find the exact z=3/2 value in d=1, and estimate the values 1.62, 1.78 for z, in d=2,3. The result d_c=4 and the expansion around d_c are very robust and can be derived just from a mild assumption on the relative scale on which the response and correlation functions vary as z approaches 2.Comment: RevTex, 4 page

    Ground State Wave Function of the Schr\"odinger Equation in a Time-Periodic Potential

    Full text link
    Using a generalized transfer matrix method we exactly solve the Schr\"odinger equation in a time periodic potential, with discretized Euclidean space-time. The ground state wave function propagates in space and time with an oscillating soliton-like wave packet and the wave front is wedge shaped. In a statistical mechanics framework our solution represents the partition sum of a directed polymer subjected to a potential layer with alternating (attractive and repulsive) pinning centers.Comment: 11 Pages in LaTeX. A set of 2 PostScript figures available upon request at [email protected] . Physical Review Letter

    An Exactly Solved Model of Three Dimensional Surface Growth in the Anisotropic KPZ Regime

    Full text link
    We generalize the surface growth model of Gates and Westcott to arbitrary inclination. The exact steady growth velocity is of saddle type with principal curvatures of opposite sign. According to Wolf this implies logarithmic height correlations, which we prove by mapping the steady state of the surface to world lines of free fermions with chiral boundary conditions.Comment: 9 pages, REVTEX, epsf, 3 postscript figures, submitted to J. Stat. Phys, a wrong character is corrected in eqs. (31) and (32

    A numerical study of the development of bulk scale-free structures upon growth of self-affine aggregates

    Full text link
    During the last decade, self-affine geometrical properties of many growing aggregates, originated in a wide variety of processes, have been well characterized. However, little progress has been achieved in the search of a unified description of the underlying dynamics. Extensive numerical evidence has been given showing that the bulk of aggregates formed upon ballistic aggregation and random deposition with surface relaxation processes can be broken down into a set of infinite scale invariant structures called "trees". These two types of aggregates have been selected because it has been established that they belong to different universality classes: those of Kardar-Parisi-Zhang and Edward-Wilkinson, respectively. Exponents describing the spatial and temporal scale invariance of the trees can be related to the classical exponents describing the self-affine nature of the growing interface. Furthermore, those exponents allows us to distinguish either the compact or non-compact nature of the growing trees. Therefore, the measurement of the statistic of the process of growing trees may become a useful experimental technique for the evaluation of the self-affine properties of some aggregates.Comment: 19 pages, 5 figures, accepted for publication in Phys.Rev.

    Topological relaxation of entangled flux lattices: Single vs collective line dynamics

    Full text link
    A symbolic language allowing to solve statistical problems for the systems with nonabelian braid-like topology in 2+1 dimensions is developed. The approach is based on the similarity between growing braid and "heap of colored pieces". As an application, the problem of a vortex glass transition in high-T_c superconductors is re-examined on microscopic levelComment: 4 pages (revtex), 4 figure

    Quantized Scaling of Growing Surfaces

    Full text link
    The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact field-theoretic methods. From previous numerical results, a few qualitative assumptions are inferred. In particular, height correlations should satisfy an operator product expansion and, unlike the correlations in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition on the roughness exponent χ\chi and the dynamic exponent zz. Hence the exact values χ=2/5,z=8/5\chi = 2/5, z = 8/5 for two-dimensional and χ=2/7,z=12/7\chi = 2/7, z = 12/7 for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure

    Low frequency response of a collectively pinned vortex manifold

    Full text link
    A low frequency dynamic response of a vortex manifold in type-II superconductor can be associated with thermally activated tunneling of large portions of the manifold between pairs of metastable states (two-level systems). We suggest that statistical properties of these states can be verified by using the same approach for the analysis of thermal fluctuations the behaviour of which is well known. We find the form of the response for the general case of vortex manifold with non-dispersive elastic moduli and for the case of thin superconducting film for which the compressibility modulus is always non-local.Comment: 8 pages, no figures, ReVTeX, the final version. Text strongly modified, all the results unchange
    • …
    corecore