45 research outputs found

    Sulfur-mediated electron shuttling during bacterial iron reduction

    Get PDF
    Microbial reduction of ferric iron [Fe(III)] is an important biogeochemical process in anoxic aquifers. Depending on groundwater pH, dissimilatory metal-reducing bacteria can also respire alternative electron acceptors to survive, including elemental sulfur (S0). To understand the interplay of Fe/S cycling under alkaline conditions, we combined thermodynamic geochemical modeling with bioreactor experiments using Shewanella oneidensis MR-1. Under these conditions, S. oneidensis can enzymatically reduce S0 but not goethite (α-FeOOH). The HS– produced subsequently reduces goethite abiotically. Because of the prevalence of alkaline conditions in many aquifers, Fe(III) reduction may thus proceed via S0-mediated electron-shuttling pathways

    Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations

    Get PDF
    This is the peer reviewed version of the following article: Bray, MS, Wu, J, Reed, BC, et al. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Geobiology. 2017; 15: 678– 689. https://doi.org/10.1111/gbi.12239, which has been published in final form at https://doi.org/10.1111/gbi.12239. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.Reactive Fe(III) minerals can influence methane (CH4) emissions by inhibiting microbial methanogenesis or by stimulating anaerobic CH4 oxidation. The balance between Fe(III) reduction, methanogenesis, and CH4 oxidation in ferruginous Archean and Paleoproterozoic oceans would have controlled CH4 fluxes to the atmosphere, thereby regulating the capacity for CH4 to warm the early Earth under the Faint Young Sun. We studied CH4 and Fe cycling in anoxic incubations of ferruginous sediment from the ancient ocean analogue Lake Matano, Indonesia, over three successive transfers (500 days in total). Iron reduction, methanogenesis, CH4 oxidation, and microbial taxonomy were monitored in treatments amended with ferrihydrite or goethite. After three dilutions, Fe(III) reduction persisted only in bottles with ferrihydrite. Enhanced CH4 production was observed in the presence of goethite, highlighting the potential for reactive Fe(III) oxides to inhibit methanogenesis. Supplementing the media with hydrogen, nickel and selenium did not stimulate methanogenesis. There was limited evidence for Fe(III)-dependent CH4 oxidation, although some incubations displayed CH4-stimulated Fe(III) reduction. 16S rRNA profiles continuously changed over the course of enrichment, with ultimate dominance of unclassified members of the order Desulfuromonadales in all treatments. Microbial diversity decreased markedly over the course of incubation, with subtle differences between ferrihydrite and goethite amendments. These results suggest that Fe(III) oxide mineralogy and availability of electron donors could have led to spatial separation of Fe(III)-reducing and methanogenic microbial communities in ferruginous marine sediments, potentially explaining the persistence of CH4 as a greenhouse gas throughout the first half of Earth history

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link

    Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200.

    No full text
    The inhibitory effects of nitrate (NO3-) and nitrite (NO2-) on dissimilatory iron (FE3+) reduction were examined in a series of electron acceptor competition experiments using Shewanella putrefaciens 200 as a model iron-reducing microorganism. S. putrefaciens 200 was found to express low-rate nitrate reductase, nitrite reductase, and ferrireductase activity after growth under highly aerobic conditions and greatly elevated rates of each reductase activity after growth under microaerobic conditions. The effects of NO3- and NO2- on the Fe3+ reduction activity of both aerobically and microaerobically grown cells appeared to follow a consistent pattern; in the presence of Fe3+ and either NO3- or NO2-, dissimilatory Fe3+ and nitrogen oxide reduction occurred simultaneously. Nitrogen oxide reduction was not affected by the presence of Fe3+, suggesting that S. putrefaciens 200 expressed a set of at least three physiologically distinct terminal reductases that served as electron donors to NO3-, NO2-, and Fe3+. However, Fe3+ reduction was partially inhibited by the presence of either NO3- or NO2-. An in situ ferrozine assay was used to distinguish the biological and chemical components of the observed inhibitory effects. Rate data indicated that neither NO3- nor NO2- acted as a chemical oxidant of bacterially produced Fe2+. In addition, the decrease in Fe3+ reduction activity observed in the presence of both NO3- and NO2- was identical to the decrease observed in the presence of NO2- alone. These results suggest that bacterially produced NO2- is responsible for inhibiting electron transport to Fe3+

    Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 ("Pseudomonas ferrireductans")

    Get PDF
    Aerobic respiration and dissimilative iron reduction were studied in pure, batch cultures of Pseudomonas sp. strain 200 ("Pseudomonas ferrireductans"). Specific respiratory inhibitors were used to identify elements of electron transport chains involved in the reduction of molecular oxygen and Fe(III). When cells were grown at a high oxygen concentration, dissimilative iron reduction occurred via an abbreviated electron transport chain. The induction of alternative respiratory pathways resulted from growth at low oxygen tension (less than 0.01 atm [1 atm = 101.29 kPa]). Induced cells were capable of O2 utilization at moderately increased rates; dissimilative iron reduction was accelerated by a factor of 6 to 8. In cells grown at low oxygen tension, dissimilative iron reduction appeared to be uncoupled from oxidative phosphorylation. Models of induced and uninduced electron transport chains, including a mathematical treatment of chemical inhibition within the uninduced, aerobic electron transport system, are presented. In uninduced cells respiring anaerobically, electron transport was limited by ferrireductase activity. This limitation may disappear among induced cells
    corecore