1,142 research outputs found
A direct proof of Kim's identities
As a by-product of a finite-size Bethe Ansatz calculation in statistical
mechanics, Doochul Kim has established, by an indirect route, three
mathematical identities rather similar to the conjugate modulus relations
satisfied by the elliptic theta constants. However, they contain factors like
and , instead of . We show here that
there is a fourth relation that naturally completes the set, in much the same
way that there are four relations for the four elliptic theta functions. We
derive all of them directly by proving and using a specialization of
Weierstrass' factorization theorem in complex variable theory.Comment: Latex, 6 pages, accepted by J. Physics
Linear and multiplicative 2-forms
We study the relationship between multiplicative 2-forms on Lie groupoids and
linear 2-forms on Lie algebroids, which leads to a new approach to the
infinitesimal description of multiplicative 2-forms and to the integration of
twisted Dirac manifolds.Comment: to appear in Letters in Mathematical Physic
Exact Solutions of a Model for Granular Avalanches
We present exact solutions of the non-linear {\sc bcre} model for granular
avalanches without diffusion. We assume a generic sandpile profile consisting
of two regions of constant but different slope. Our solution is constructed in
terms of characteristic curves from which several novel predictions for
experiments on avalanches are deduced: Analytical results are given for the
shock condition, shock coordinates, universal quantities at the shock, slope
relaxation at large times, velocities of the active region and of the sandpile
profile.Comment: 7 pages, 2 figure
Locating Boosted Kerr and Schwarzschild Apparent Horizons
We describe a finite-difference method for locating apparent horizons and
illustrate its capabilities on boosted Kerr and Schwarzschild black holes. Our
model spacetime is given by the Kerr-Schild metric. We apply a Lorentz boost to
this spacetime metric and then carry out a 3+1 decomposition. The result is a
slicing of Kerr/Schwarzschild in which the black hole is propagated and Lorentz
contracted. We show that our method can locate distorted apparent horizons
efficiently and accurately.Comment: Submitted to Physical Review D. 12 pages and 22 figure
Energy minimization using Sobolev gradients: application to phase separation and ordering
A common problem in physics and engineering is the calculation of the minima
of energy functionals. The theory of Sobolev gradients provides an efficient
method for seeking the critical points of such a functional. We apply the
method to functionals describing coarse-grained Ginzburg-Landau models commonly
used in pattern formation and ordering processes.Comment: To appear J. Computational Physic
Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view
The "metric" structure of nonrelativistic spacetimes consists of a one-form
(the absolute clock) whose kernel is endowed with a positive-definite metric.
Contrarily to the relativistic case, the metric structure and the torsion do
not determine a unique Galilean (i.e. compatible) connection. This subtlety is
intimately related to the fact that the timelike part of the torsion is
proportional to the exterior derivative of the absolute clock. When the latter
is not closed, torsionfreeness and metric-compatibility are thus mutually
exclusive. We will explore generalisations of Galilean connections along the
two corresponding alternative roads in a series of papers. In the present one,
we focus on compatible connections and investigate the equivalence problem
(i.e. the search for the necessary data allowing to uniquely determine
connections) in the torsionfree and torsional cases. More precisely, we
characterise the affine structure of the spaces of such connections and display
the associated model vector spaces. In contrast with the relativistic case, the
metric structure does not single out a privileged origin for the space of
metric-compatible connections. In our construction, the role of the Levi-Civita
connection is played by a whole class of privileged origins, the so-called
torsional Newton-Cartan (TNC) geometries recently investigated in the
literature. Finally, we discuss a generalisation of Newtonian connections to
the torsional case.Comment: 79 pages, 7 figures; v2: added material on affine structure of
connection space, former Section 4 postponed to 3rd paper of the serie
Courant-Dorfman algebras and their cohomology
We introduce a new type of algebra, the Courant-Dorfman algebra. These are to
Courant algebroids what Lie-Rinehart algebras are to Lie algebroids, or Poisson
algebras to Poisson manifolds. We work with arbitrary rings and modules,
without any regularity, finiteness or non-degeneracy assumptions. To each
Courant-Dorfman algebra (\R,\E) we associate a differential graded algebra
\C(\E,\R) in a functorial way by means of explicit formulas. We describe two
canonical filtrations on \C(\E,\R), and derive an analogue of the Cartan
relations for derivations of \C(\E,\R); we classify central extensions of
\E in terms of H^2(\E,\R) and study the canonical cocycle
\Theta\in\C^3(\E,\R) whose class obstructs re-scalings of the
Courant-Dorfman structure. In the nondegenerate case, we also explicitly
describe the Poisson bracket on \C(\E,\R); for Courant-Dorfman algebras
associated to Courant algebroids over finite-dimensional smooth manifolds, we
prove that the Poisson dg algebra \C(\E,\R) is isomorphic to the one
constructed in \cite{Roy4-GrSymp} using graded manifolds.Comment: Corrected formulas for the brackets in Examples 2.27, 2.28 and 2.29.
The corrections do not affect the exposition in any wa
Exact solution for random walks on the triangular lattice with absorbing boundaries
The problem of a random walk on a finite triangular lattice with a single
interior source point and zig-zag absorbing boundaries is solved exactly. This
problem has been previously considered intractable.Comment: 10 pages, Latex, IOP macro
Some examples of exponentially harmonic maps
The aim of this paper is to study some examples of exponentially harmonic
maps. We study such maps firstly on flat euclidean and Minkowski spaces and
secondly on Friedmann-Lema\^ itre universes. We also consider some new models
of exponentially harmonic maps which are coupled with gravity which happen to
be based on a generalization of the lagrangian for bosonic strings coupled with
dilatonic field.Comment: 16 pages, 5 figure
Solving One Dimensional Scalar Conservation Laws by Particle Management
We present a meshfree numerical solver for scalar conservation laws in one
space dimension. Points representing the solution are moved according to their
characteristic velocities. Particle interaction is resolved by purely local
particle management. Since no global remeshing is required, shocks stay sharp
and propagate at the correct speed, while rarefaction waves are created where
appropriate. The method is TVD, entropy decreasing, exactly conservative, and
has no numerical dissipation. Difficulties involving transonic points do not
occur, however inflection points of the flux function pose a slight challenge,
which can be overcome by a special treatment. Away from shocks the method is
second order accurate, while shocks are resolved with first order accuracy. A
postprocessing step can recover the second order accuracy. The method is
compared to CLAWPACK in test cases and is found to yield an increase in
accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth
International Workshop Meshfree Methods for Partial Differential Equation
- …