79 research outputs found

    Processing of DMSP magnetic data: Handbook of programs, tapes, and datasets

    Get PDF
    The DMSP F-7 satellite was an operational Air Force meteorological satellite which carried a magnetometer for geophysical measurements. The magnetometer was located within the body of the spacecraft in the presence of large spacecraft fields. In addition to stray magnetic fields, the data have inherent position and time inaccuracies. Algorithms were developed to identify and remove time varying magnetic field noise from the data. These algorithms are embodied in an automated procedure which fits a smooth curve through the data and then identifies outliers and which filters the predominant Fourier component of noise from the data. Techniques developed for Magsat were then modified and used to attempt determination of the spacecraft fields, of any rotation between the magnetometer axes and the spacecraft axes, and of any scale changes within the magnetometer itself. Software setup and usage are documented and program listings are included in the Appendix. The initial and resulting data are archived on magnetic cartridge and the formats are documented

    An initial analysis of the data from the Polar Orbiting Geophysical (POGS) Satellite

    Get PDF
    The Polar Orbiting Geophysical Satellite (POGS) was launched in 1990 to measure the geomagnetic field. POGS data from selected magnetically quiet days was chosen, quality checked and deleted where thought to be erroneous. A time and position correction was applied. The resulting data was fit to a degree 13 spherical harmonic model. Evaluation of the quality of the data indicates that it is sufficient for definition of the low degree (approximately less than 8) portion of the geomagnetic field. Further correction of the data time and position may improve this quality

    Geomagnetic model investigations for 1980 - 1989: A model for strategic defense initiative particle beam experiments and a study in the effects of data types and observatory bias solutions

    Get PDF
    Two suites of geomagnetic field models were generated at the request of Los Alamos National Lab. concerning Strategic Defense Initiative (SDI) research. The first is a progression of five models incorporating MAGSAT data and data from a sequence of batches as a priori information. The batch sequence is: post 1979.5 observatory data, post 1980 land survey and selected aeromagnetic and marine survey data, a special White Sands (NM) area survey by Project Magnet with some additional post 1980 marine survey data, and finally DE-2 satellite data. These models are of 13th deg and order in their main field terms, and deg and order 10 in their first derivative temporal terms. The second suite consists of four models based solely upon post 1983.5 observatory and survey data. They are of deg and order 10 in main field and 8 in a first deg Taylor series. A comprehensive error analysis was applied to both series, which accounted for error sources such as the truncated core and crustal fields, and the neglected Sq and low deg crustal fields. Comparison of the power spectrum of the MGST (10/81) model with those of this series show good agreement

    Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission

    Get PDF
    Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project

    Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution

    Get PDF
    We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies

    Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone

    Get PDF
    We present a new global electrical conductivity model of Earths mantle. The model was derived by using a novel methodology, which is based on inverting satellite magnetic field measurements from different sources simultaneously. Specifically, we estimated responses of magnetospheric origin and ocean tidal magnetic signals from the most recent Swarm and CHAMP data. The challenging task of properly accounting for the ocean effect in the data was addressed through full three-dimensional solution of Maxwell's equations. We show that simultaneous inversion of magnetospheric and tidal magnetic signals results in a model with much improved resolution. Comparison with laboratory-based conductivity profiles shows that obtained models are compatible with a pyrolytic composition and a water content of 0.01 wt and 0.1 wt in the upper mantle and transition zone, respectively
    corecore