360 research outputs found

    ΛN\Lambda N correlations from the stopped K−K^- reaction on 4{}^4He

    Full text link
    We have investigated correlations of coincident ΛN\Lambda N pairs from the stopped K−K^- reaction on 4{}^4He, and clearly observed Λp\Lambda p and Λn\Lambda n branches of the two-nucleon absorption process in the ΛN\Lambda N invariant mass spectra. In addition, non-mesonic reaction channels, which indicate possible exotic signals for the formation of strange multibaryon states, have been identified.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    VIP: An Experiment to Search for a Violation of the Pauli Exclusion Principle

    Full text link
    The Pauli Exclusion Principle is a basic principle of Quantum Mechanics, and its validity has never been seriously challenged. However, given its fundamental standing, it is very important to check it as thoroughly as possible. Here we describe the VIP (VIolation of the Pauli exclusion principle) experiment, an improved version of the Ramberg and Snow experiment (E. Ramberg and G. Snow, {\it Phys. Lett. B} {\bf 238}, 438 (1990)); VIP has just completed the installation at the Gran Sasso underground laboratory, and aims to test the Pauli Exclusion Principle for electrons with unprecedented accuracy, down to β2/2≈10−30−10−31\beta^2/2 \approx 10^{-30} - 10^{-31}. We report preliminary experimental results and briefly discuss some of the implications of a possible violation.Comment: Plenary talk presented by E. Milotti at Meson 2006, Cracow, 9-13 June 200

    New experimental limit on the Pauli Exclusion Principle violation by electrons

    Get PDF
    The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. The present paper reports a new limit on the probability that PEP is violated by electrons, in a search for a shifted Kα_\alpha line in copper: the presence of this line in the soft X-ray copper fluorescence would signal a transition to a ground state already occupied by 2 electrons. The obtained value, 1/2β2≤4.5×10−28{1/2} \beta^{2} \leq 4.5\times 10^{-28}, improves the existing limit by almost two orders of magnitude.Comment: submitted to Phys. Lett.

    New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)

    Full text link
    The Pauli Exclusion Principle is one of the basic principles of modern physics and is at the very basis of our understanding of matter: thus it is fundamental importance to test the limits of its validity. Here we present the VIP (Violation of the Pauli Exclusion Principle) experiment, where we search for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli-forbidden transition. ] VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by at least four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10**-29 - 10**-30 region. First experimental results, together with future plans, are presented.Comment: To appear in proceedings of the XLVI International Winter Meeting on Nuclear Physics, Bormio, Italy, January 20-26, 200

    The VIP Experiment

    Get PDF
    The Pauli Exclusion Principle (PEP) is a basic principle of Quantum Mechanics, and its validity has never been seriously challenged. However, given its importance, it is very important to check it as thoroughly as possible. Here we describe the VIP (Violation of PEP) experiment, an improved version of the Ramberg and Snow experiment (Ramberg and Snow, Phys. Lett. B238 (1990) 438); VIP shall be performed at the Gran Sasso underground laboratories, and aims to test the Pauli Exclusion Principle for electrons with unprecedented accuracy, down to β22∼10−30\frac{\beta^2}{2} \sim 10^{-30}Comment: 7 pages, 5 figures, PDF only, presented by Edoardo Milotti to the conference "Quantum Theory: reconsideration of foundations-3", Vaxjo (Sweden), June, 6-11 200

    Testing the Pauli Exclusion Principle for Electrons

    Full text link
    One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations. Numerous experiments were performed to search for tiny violation of this rule in various systems. The experiment VIP at the Gran Sasso underground laboratory is searching for possible small violations of the Pauli Exclusion Principle for electrons leading to forbidden X-ray transitions in copper atoms. VIP is aiming at a test of the Pauli Exclusion Principle for electrons with high accuracy, down to the level of 10−29^{-29} - 10−30^{-30}, thus improving the previous limit by 3-4 orders of magnitude. The experimental method, results obtained so far and new developments within VIP2 (follow-up experiment at Gran Sasso, in preparation) to further increase the precision by 2 orders of magnitude will be presented.Comment: Proceedings DISCRETE 2012-Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, December 3-7, 201

    Line shape of the muH(3p - 1s) hyperfine transitions

    Get PDF
    The (3p - 1s) X-ray transition to the muonic hydrogen ground state was measured with a high resolution crystal spectrometer. A Doppler effect broadening of the X-ray line was established which could be attributed to different Coulomb de-excitation steps preceding the measured transition. The assumption of a statistical population of the hyperfine levels of the muonic hydrogen ground state was directly confirmed by the experiment and measured values for the hyperfine splitting can be reported. The results allow a decisive test of advanced cascade model calculations and establish a method to extract fundamental strong-interaction parameters from pionic hydrogen experiments.Comment: Submitted to Physical Review Letter
    • …
    corecore