4,896 research outputs found

    Evolution of adaptation mechanisms: adaptation energy, stress, and oscillating death

    Full text link
    In 1938, H. Selye proposed the notion of adaptation energy and published "Experimental evidence supporting the conception of adaptation energy". Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye's adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyse Selye's axioms of adaptation energy together with Goldstone's modifications and propose a series of models for interpretation of these axioms. {\em Adaptation energy is considered as an internal coordinate on the `dominant path' in the model of adaptation}. The phenomena of `oscillating death' and `oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyse the optimal strategies for different systems of factors

    Phase and Intensity Distributions of Individual Pulses of PSR B0950+08

    Get PDF
    The distribution of the intensities of individual pulses of PSR B0950+08 as a function of the longitudes at which they appear is analyzed. The flux density of the pulsar at 111 MHz varies strongly from day to day (by up to a factor of 13) due to the passage of the radiation through the interstellar plasma (interstellar scintillation). The intensities of individual pulses can exceed the amplitude of the mean pulse profile, obtained by accumulating 770 pulses, by more than an order of magnitude. The intensity distribution along the mean profile is very different for weak and strong pulses. The differential distribution function for the intensities is a power law with index n = -1.1 +- 0.06 up to peak flux densities for individual pulses of the order of 160 Jy

    Hadronization corrections to helicity components of the fragmentation function

    Full text link
    In the hadronic decays of Z, gluon emission leads to the appearance of the longitudinal component of the fragmentation function, F_L. Measurement of F_L and the transverse component, F_T, could thus provide an insight into the gluon fragmentation function. However, hadronization corrections at low x can be significant. Here we present a method of accounting for such corrections, using the JETSET event generator as illustration.Comment: 11 pages, 5 figure

    Formation of the lexemes corpus for the level model development of language

    Get PDF
    The article deals with the principles of selection of factual material on the problem of fixing language invariants and variant

    Semiotic knowledge about mass communication Umberto Eco and problems of comprehension of digital reality

    Get PDF
    Classical sociological theories have enormous potential for explaining social objects, phenomena, and processes, including those taking place in a modern informational society. Among these classics is owned Umberto Eco - an Italian scholar, literary critic, publicist and writer, is among those classics. Some aspects of the scientific heritage of Umberto Eco about semiotic analysis, signs and interpretation of their meanings, mass communication in relation to the tasks of studying virtual communications, the Internet, network society and the digital economy have been revealed. The phenomenon of “visual communication” has been considered in detail: in natural language, the value is predetermined, in the visual it is generated as the message is received. It is assumed that not all communicative phenomena can be explained using linguistic categories. Separately, a description of the methodological components of the concept of mass communication of the scientist has been made: it is argued that by means of mass culture a certain cultural code opposite to the transmitter code can be formed at the receiving instance. The results of the interpretation of the primary data of the sociological research project of the State University of Management have been presented, on the basis of which it can be concluded, that young people go beyond the important sociocultural norms of communication, which can cause distortion of signs and image codes of the virtual interlocutor and lead to a dangerous situation. The conclusion about the possibilities of using the scientific method of Umberto Eco in digital sociology for social diagnostics of the content and specificity of communications on the Internet, which allows to represent different aspects of your real or desired “I”, to create identities through many virtual characters, has been substantiated

    Dynamic and Thermodynamic Models of Adaptation

    Full text link
    The concept of biological adaptation was closely connected to some mathematical, engineering and physical ideas from the very beginning. Cannon in his "The wisdom of the body" (1932) used the engineering vision of regulation. In 1938, Selye enriched this approach by the notion of adaptation energy. This term causes much debate when one takes it literally, i.e. as a sort of energy. Selye did not use the language of mathematics, but the formalization of his phenomenological theory in the spirit of thermodynamics was simple and led to verifiable predictions. In 1980s, the dynamics of correlation and variance in systems under adaptation to a load of environmental factors were studied and the universal effect in ensembles of systems under a load of similar factors was discovered: in a crisis, as a rule, even before the onset of obvious symptoms of stress, the correlation increases together with variance (and volatility). During 30 years, this effect has been supported by many observations of groups of humans, mice, trees, grassy plants, and on financial time series. In the last ten years, these results were supplemented by many new experiments, from gene networks in cardiology and oncology to dynamics of depression and clinical psychotherapy. Several systems of models were developed: the thermodynamic-like theory of adaptation of ensembles and several families of models of individual adaptation. Historically, the first group of models was based on Selye's concept of adaptation energy and used fitness estimates. Two other groups of models are based on the idea of hidden attractor bifurcation and on the advection--diffusion model for distribution of population in the space of physiological attributes. We explore this world of models and experiments, starting with classic works, with particular attention to the results of the last ten years and open questions.Comment: Review paper, 48 pages, 29 figures, 183 bibliography, the final version accepted in Phys Life Re

    Asymmetry Function of Interstellar Scintillations of Pulsars

    Get PDF
    A new method for separating intensity variations of a source's radio emission having various physical natures is proposed. The method is based on a joint analysis of the structure function of the intensity variations and the asymmetry function, which is a generalization of the asymmetry coefficient and characterizes the asymmetry of the distribution function of the intensity fluctuations on various scales for the inhomogeneities in the diffractive scintillation pattern. Relationships for the asymmetry function in the cases of a logarithmic normal distribution of the intensity fluctuations and a normal distribution of the field fluctuations are derived. Theoretical relationships and observational data on interstellar scintillations of pulsars (refractive, diffractive, and weak scintillations) are compared. Pulsar scintillations match the behavior expected for a normal distribution of the field fluctuations (diffractive scintillation) or logarithmic normal distribution of the intensity fluctuations (refractive and weak scintillation). Analysis of the asymmetry function is a good test for distinguishing scintillations against the background of variations that have different origins
    corecore