654 research outputs found

    The matter Lagrangian and the energy-momentum tensor in modified gravity with non-minimal coupling between matter and geometry

    Get PDF
    We show that in modified f(R)f(R) type gravity models with non-minimal coupling between matter and geometry, both the matter Lagrangian, and the energy-momentum tensor, are completely and uniquely determined by the form of the coupling. This result is obtained by using the variational formulation for the derivation of the equations of motion in the modified gravity models with geometry-matter coupling, and the Newtonian limit for a fluid obeying a barotropic equation of state. The corresponding energy-momentum tensor of the matter in modified gravity models with non-minimal coupling is more general than the usual general-relativistic energy-momentum tensor for perfect fluids, and it contains a supplementary, equation of state dependent term, which could be related to the elastic stresses in the body, or to other forms of internal energy. Therefore, the extra-force induced by the coupling between matter and geometry never vanishes as a consequence of the thermodynamic properties of the system, or for a specific choice of the matter Lagrangian, and it is non-zero in the case of a fluid of dust particles.Comment: 6 pages, accepted for publication in PRD; references adde

    On Einstein clusters as galactic dark matter halos

    Get PDF
    We consider global and gravitational lensing properties of the recently suggested Einstein clusters of WIMPs as galactic dark matter halos. Being tangential pressure dominated, Einstein clusters are strongly anisotropic systems which can describe any galactic rotation curve by specifying the anisotropy. Due to this property, Einstein clusters may be considered as dark matter candidates. We analyse the stability of the Einstein clusters against both radial and non-radial pulsations, and we show that the Einstein clusters are dynamically stable. With the use of the Buchdahl type inequalities for anisotropic bodies, we derive upper limits on the velocity of the particles defining the cluster. These limits are consistent with those obtained from stability considerations. The study of light deflection shows that the gravitational lensing effect is slightly smaller for the Einstein clusters, as compared to the singular isothermal density sphere model for dark matter. Therefore lensing observations may discriminate, at least in principle, between Einstein cluster and other dark matter models.Comment: MNRAS LaTeX, 7 pages, accepted by MNRAS; reference adde

    Constraints on extra-dimensions and variable constants from cosmological gamma ray bursts

    Full text link
    The observation of the time delay between the soft emission and the high-energy radiation from cosmological gamma ray bursts can be used as an important observational test of multi-dimensional physical theories. The main source of the time delay is the variation of the electromagnetic coupling, due to dimensional reduction, which induces an energy dependence of the speed of light. For photons with energies around 1 TeV, the time delay could range from a few seconds in the case of Kaluza-Klein models to a few days for models with large extra-dimensions. Based on these results we suggest that the detection of the 18-GeV photon \sim 4500 s after the keV/MeV burst in GRB 940217 provides a strong evidence for the existence of extra-dimensions. The time delay of photons, if observed by the next generation of high energy detectors, like, for example, the SWIFT and GLAST satellite based detectors, or the VERITAS ground-based TeV gamma-ray instrument, could differentiate between the different models with extra-dimensions.Comment: 8 pages, 4 figures, contribution to the proceedings of the II Workshop on Unidentified Gamma-Ray Sources, Hong Kong, June 1-4, 200

    Exact Dissipative Cosmologies with Stiff Fluid

    Get PDF
    The general solution of the gravitational field equations in the flat Friedmann-Robertson-Walker geometry is obtained in the framework of the full Israel-Stewart-Hiscock theory for a bulk viscous stiff cosmological fluid, with bulk viscosity coefficient proportional to the energy density.Comment: 7 pages, 6 figure

    Isotropic stars in general relativity

    Full text link
    We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior spacetime of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only n=21n=21 terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars.Comment: 12 pages, 10 figures, accepted for publication in EPJC; references adde
    corecore