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We show that in modified fðRÞ type gravity models with nonminimal coupling between matter and

geometry, both the matter Lagrangian and the energy-momentum tensor are completely and uniquely

determined by the form of the coupling. This result is obtained by using the variational formulation for the

derivation of the equations of motion in the modified gravity models with geometry-matter coupling, and

the Newtonian limit for a fluid obeying a barotropic equation of state. The corresponding energy-

momentum tensor of the matter in modified gravity models with nonminimal coupling is more general

than the usual general-relativistic energy-momentum tensor for perfect fluids, and it contains a supple-

mentary, equation of state dependent term, which could be related to the elastic stresses in the body, or to

other forms of internal energy. Therefore, the extra force induced by the coupling between matter and

geometry never vanishes as a consequence of the thermodynamic properties of the system, or for a specific

choice of the matter Lagrangian, and it is nonzero in the case of a fluid of dust particles.

DOI: 10.1103/PhysRevD.81.044021 PACS numbers: 04.50.Kd, 04.20.Cv, 95.35.+d

I. INTRODUCTION

A very promising way to explain the recent observatio-
nal data [1,2] on the acceleration of the Universe and on
dark matter is to assume that at large scales the Einstein
gravity model of general relativity breaks down, and a
more general action describes the gravitational field.
Theoretical models in which the standard Einstein-
Hilbert action is replaced by an arbitrary function of the
Ricci scalar R, first proposed in [3], have been extensively
investigated lately. Cosmic acceleration can be explained
by fðRÞ gravity [4], and the conditions of viable cosmo-
logical models have been derived in [5]. In the context of
the Solar System regime, severe weak-field constraints
seem to rule out most of the models proposed so far
[6,7], although viable models do exist [8–11]. The possi-
bility that the galactic dynamic of massive test particles can
be understood without the need for dark matter was also
considered in the framework of fðRÞ gravity models [12–
16]. For a review of fðRÞ generalized gravity models see
[17].

A generalization of the fðRÞ gravity theories was pro-
posed in [18] by including in the theory an explicit cou-
pling of an arbitrary function of the Ricci scalar R with the
matter Lagrangian density Lm. As a result of the coupling
the motion of the massive particles is nongeodesic, and an
extra force, orthogonal to the four-velocity, arises. The
connections with modified Newtonian dynamics and the
Pioneer anomaly were also explored. This model was
extended to the case of the arbitrary couplings in both
geometry and matter in [19]. The implications of the non-
minimal coupling on the stellar equilibrium were inves-

tigated in [20], where constraints on the coupling were also
obtained. An inequality which expresses a necessary and
sufficient condition to avoid the Dolgov-Kawasaki insta-
bility for the model was derived in [21]. The relation
between the model with geometry-matter coupling and
ordinary scalar-tensor gravity, or scalar-tensor theories
which include nonstandard couplings between the scalar
and matter, was studied in [22]. In the specific case where
both the action and the coupling are linear in R, the action
leads to a theory of gravity which includes higher order
derivatives of the matter fields without introducing more
dynamics in the gravity sector [23]. The equivalence be-
tween a scalar theory and the model with the nonminimal
coupling of the scalar curvature and matter was considered
in [24]. This equivalence allows for the calculation of the
parametrized post-Newtonian parameters � and �, which
may lead to a better understanding of the weak-field limit
of fðRÞ theories. The equations of motion of test bodies in
the nonminimal coupling model by means of a multipole
method were derived in [25]. The energy conditions and
the stability of the model under the Dolgov-Kawasaki
criterion were studied in [26]. For a review of modified
fðRÞ gravity with geometry-matter coupling see [27].
The extra force in the fðRÞ gravity with nonminimal

coupling has the intriguing property that it depends on both
the matter Lagrangian and the energy-momentum tensor. It
was pointed out in [22] that adopting the standard

Lagrangian density Lð1Þ
m ¼ P, where P is the pressure,

the extra force vanishes in the case of dust. Different forms
for the matter Lagrangian density Lm, and the resulting
extra force, were considered in [28], and it was shown that

the more natural form for Lm, L
ð2Þ
m ¼ ��, does not imply

the vanishing of the extra force. The impact on the classical
equivalence between different Lagrangian descriptions of a*harko@hkucc.hku.hk
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perfect fluid was also analyzed. Recently, the problem of
the two Lagrangian descriptions of a perfect fluid, and its
effect on the extra force, was reconsidered in [29]. The
main conclusion of this study is that ’’it is a fact that by
choosingL1 ¼ P there is no extra force on a dust fluid, and
it is equally undeniable that by choosing L2 ¼ �� there
will be such a force, which may ultimately provide an
alternative to dark matter.’’ It is also pointed out that ’’as
soon as this fluid is coupled explicitly to gravity . . . the two
Lagrangian densities cease to be equivalent’’ [29].

It is the purpose of the present paper to show that in the
fðRÞ gravity with nonminimal coupling the matter
Lagrangian, and the corresponding energy-momentum ten-
sor, are not model-independent quantities, but they are
completely and uniquely determined by the nature of the
coupling between matter and geometry. This result can be
obtained by deriving first the equations of motion in the
modified gravity model from a variational principle, and
then considering the Newtonian limit of the particle action
for a fluid obeying a barotropic equation of state. The
corresponding energy-momentum tensor of the matter is
more general than the usual general-relativistic energy-
momentum tensor for perfect fluids, and it contains a
supplementary term that may be related to the elastic
stresses in the body, or to other sources of internal energy.
The matter Lagrangian can be expressed either in terms of
the density or in terms of the pressure, and in both repre-
sentations the physical description of the system is equiva-
lent. Therefore the presence (or absence) of the extra force
is independent of the specific form of the matter
Lagrangian, and it never vanishes, except in the case of
(un)physical systems with zero sound speed. In particular,
in the case of dust particles, the extra force is always
nonzero.

The present paper is organized as follows. The matter
Lagrangian and the energy-momentum tensor in fðRÞ
gravity with nonminimal coupling are derived in Sec. II.
We discuss and conclude our results in Sec. III. In the
present paper we use the Landau-Lifshitz [30] sign con-
ventions and definitions, and the natural system of units
with c ¼ 8�G ¼ 1.

II. MATTER AND ENERGY-MOMENTUM TENSOR
IN MODIFIED GRAVITY WITH LINEAR
COUPLING BETWEEN GEOMETRYAND

MATTER

The action for the modified theories of gravity proposed
in [18] takes the following form:

S ¼
Z �

1

2
f1ðRÞ þ ½1þ �f2ðRÞ�Lm

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where fiðRÞ (with i ¼ 1, 2) are arbitrary functions of the
Ricci scalar R, and Lm is the Lagrangian density corre-
sponding to matter. The strength of the interaction between
f2ðRÞ and the matter Lagrangian is characterized by a

coupling constant �. We define the energy-momentum
tensor of the matter as [30]

T�� ¼ 2ffiffiffiffiffiffiffi�g
p

�
@ð ffiffiffiffiffiffiffi�g
p

LmÞ
@g�� � @

@x�
@ð ffiffiffiffiffiffiffi�g
p

LmÞ
@ð@g��=@x�Þ

�
: (2)

By assuming that the Lagrangian density Lm of the
matter depends only on the metric tensor components
g��, and not on its derivatives, we obtain T�� ¼ Lmg�� �
2@Lm=@g

��. By taking into account the explicit form of
the field equations one obtains for the covariant divergence
of the energy-momentum tensor the equation [18]

r�T�� ¼ 2fr� ln½1þ �f2ðRÞ�g @Lm

@g�� : (3)

As a specific example of generalized gravity models
with linear matter-geometry coupling, we consider the
case in which the matter, assumed to be a perfect thermo-
dynamic fluid, obeys a barotropic equation of state, with
the thermodynamic pressure p being a function of the rest
mass density of the matter (for short: matter density) �
only, so that p ¼ pð�Þ. In this case, the matter Lagrangian
density, which in the general case could be a function of
both density and pressure, Lm ¼ Lmð�; pÞ, or of only one
of the thermodynamic parameters, becomes an arbitrary
function of the density of the matter � only, so that Lm ¼
Lmð�Þ. Then the energy-momentum tensor of the matter is
given by

T�� ¼ �
dLm

d�
u�u� þ

�
Lm � �

dLm

d�

�
g��; (4)

where the four-velocity u� ¼ dx�=ds satisfies the condi-
tion g��u�u� ¼ 1. To obtain Eq. (4) we have imposed the

condition of the conservation of the matter current,
r�ð�u�Þ ¼ 0, and we have used the relation �� ¼
ð1=2Þ�ðg�� � u�u�Þ�g��, whose proof is given in the

Appendix. With the use of the identity u�r�u
� ¼

d2x�=ds2 þ ��
��u

�u�, from Eqs. (3) and (4) we obtain

the equation of motion of a test fluid in the modified gravity
model with linear coupling between matter and geometry
as

d2x�

ds2
þ ��

��u
�u� ¼ f�; (5)

where

f� ¼ �r� ln

�
½1þ �f2ðRÞ� dLmð�Þ

d�

�
ðu�u� � g��Þ: (6)

The extra force f�, generated due to the presence of
the coupling between matter and geometry, is perpendicu-
lar to the four-velocity, f�u� ¼ 0. The equation of motion

Eq. (5) can be obtained from the variational principle

�Sp ¼ �
Z

Lpds ¼ �
Z ffiffiffiffi

Q
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��u
�u�

q
ds ¼ 0; (7)
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where Sp and Lp ¼ ffiffiffiffi
Q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��u

�u�
p

are the action and the

Lagrangian density for the test particles, respectively, and

ffiffiffiffi
Q

p ¼ ½1þ �f2ðRÞ� dLmð�Þ
d�

: (8)

To prove this result we start with the Lagrange equations
corresponding to the action (7),

d

ds

�
@Lp

@u�

�
� @Lp

@x�
¼ 0: (9)

Since @Lp=@u
� ¼ ffiffiffiffi

Q
p

u� and @Lp=@x
� ¼ ð1=2Þ�ffiffiffiffi

Q
p

g��;�u
�u� þ ð1=2ÞQ;�=Q, a straightforward calcula-

tion gives the equations of motion of the particle as

d2x�

ds2
þ ��

��u
�u� þ ðu�u� � g��Þr� ln

ffiffiffiffi
Q

p ¼ 0: (10)

By simple identification with the equation of motion of the
modified gravity model with linear matter-geometry cou-
pling, given by Eq. (5), we obtain the explicit form of

ffiffiffiffi
Q

p
,

as given by Eq. (8). When
ffiffiffiffi
Q

p ! 1 we reobtain the stan-
dard general-relativistic equation for geodesic motion.

The variational principle (7) can be used to study the
Newtonian limit of the model. In the limit of the weak

gravitational fields, ds � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	� ~v2

p
dt � ð1þ	�

~v2=2Þdt, where 	 is the Newtonian potential and ~v is the
usual tridimensional velocity of the fluid. By representing
the function

ffiffiffiffi
Q

p
as

ffiffiffiffi
Q

p ¼ dLmð�Þ
d�

þ �f2ðRÞdLmð�Þ
d�

; (11)

in the first order of approximation the equations of motion
of the fluid can be obtained from the variational principle

�
Z �

dLmð�Þ
d�

þ �f2ðRÞdLmð�Þ
d�

þ	� ~v2

2

�
dt ¼ 0; (12)

and are given by

~a ¼ �r	�r dLmð�Þ
d�

�rUE ¼ ~aN þ ~aH þ ~aE; (13)

where ~a is the total acceleration of the system, ~aN ¼ �r	
is the Newtonian gravitational acceleration, and ~aE ¼
�rUE ¼ ��r½f2ðRÞdLmð�Þ=d�� is a supplementary ac-
celeration induced due to the coupling between matter and
geometry. As for the term ~aH ¼ �r½dLmð�Þ=d��, it has to
be identified with the hydrodynamic acceleration term in
the perfect fluid Euler equation,

~a H ¼ �rdLmð�Þ
d�

¼ �r
Z �

�0

dp

d�

d�

�
; (14)

where �0, an integration constant, plays the role of a
limiting density. Hence the matter Lagrangian can be
obtained by a simple integration as

Lmð�Þ ¼ �½1þ�ð�Þ� �
Z p

p0

dp; (15)

where �ð�Þ ¼ R
p
p0
dp=�, and we have normalized an

arbitrary integration constant to one. p0 is an integration
constant, or a limiting pressure. The corresponding energy-
momentum tensor of the matter is given by

T�� ¼ f�½1þ�ð�Þ� þ pð�Þgu�u� � pð�Þg��; (16)

respectively, where

�ð�Þ ¼
Z �

�0

p

�2
d� ¼ �ð�Þ � pð�Þ

�
; (17)

and with all the constant terms included in the definition of
p. By introducing the energy density of the body according
to the definition " ¼ �½1þ�ð�Þ�, the energy-momentum
tensor of a test fluid can be written in the modified
gravity models with geometry-matter coupling in a form
similar to the standard general-relativistic case, T�� ¼
½"ð�Þ þ pð�Þ�u�u� � pð�Þg��.
From a physical point of view�ð�Þ can be interpreted as

the elastic (deformation) potential energy of the body, and
therefore Eq. (16) corresponds to the energy-momentum
tensor of a compressible elastic isotropic system. The
matter Lagrangian can also be written in the simpler
form Lmð�Þ ¼ ��ð�Þ.
If the pressure does not have a thermodynamic or radia-

tive component one can take p0 ¼ 0. If the pressure is a
constant background quantity, independent of the density,
so that p ¼ p0, then Lmð�Þ ¼ �, and the energy-
momentum tensor of the matter takes the form correspond-
ing to dust, T�� ¼ �u�u�.

III. DISCUSSIONS AND FINAL REMARKS

In the present paper we have shown that in the fðRÞ
gravity with nonminimal coupling the matter Lagrangian
and the energy-momentum tensor can be obtained uniquely
and consistently from the form of the coupling between
matter and geometry. The coupling completely fixes both
the matter Lagrangian and the energy-momentum tensor.
Since the matter is supposed to obey a barotropic equation
of state, this result is independent of the concrete repre-
sentation of the matter Lagrangian in terms of the thermo-
dynamic quantities. The same results are obtained by
assuming Lm ¼ LmðpÞ—due to the equation of state �
and p are freely interchangeable thermodynamic quanti-
ties, and the Lagrangians expressed in terms of � and p
only are completely equivalent. More general situations, in
which the density and pressure are functions of the particle
number and temperature, respectively, and the equation of
state is given in a parametric form, can be analyzed in a
similar way.
The form of the matter Lagrangian, and the energy-

momentum tensor, are strongly dependent on the equation
of state. For example, if the barotropic equation of state is

THE MATTER LAGRANGIAN AND THE ENERGY-MOMENTUM . . . PHYSICAL REVIEW D 81, 044021 (2010)

044021-3



linear, p ¼ ð�� 1Þ�, � ¼ constant, 1 � � � 2, then

Lmð�Þ ¼ �

�
1þ ð�� 1Þ

�
ln

�
�

�0

�
� 1

��
; (18)

and �ð�Þ ¼ ð�� 1Þ lnð�=�0Þ, respectively. In the case of

a polytropic equation of state p ¼ K�1þ1=n, K, n ¼
constant, we obtain

Lmð�Þ ¼ �þ K

�
n2

nþ 1
� 1

�
�1þ1=n; (19)

and �ð�Þ ¼ Kn�1þ1=n ¼ npð�Þ, respectively, where we
have taken for simplicity �0 ¼ p0 ¼ 0. For a fluid satisfy-
ing the ideal gas equation of state p ¼ kB�T=�, where kB
is Boltzmann’s constant, T is the temperature, and � is the
mean molecular weight, we obtain

Lmð�Þ ¼ �

�
1þ kBT

�

�
ln

�
�

�0

�
� 1

��
þ p0: (20)

In the case of a physical system satisfying the ideal gas
equation of state, the extra acceleration induced by the
presence of the nonminimal coupling between matter and
geometry is given by

~a E � ��
kBT

�
r
�
f2ðRÞ ln ��0

�
; (21)

and it is proportional to the temperature of the fluid. It is
also interesting to note that the limiting density and pres-
sure �0 and p0 generate in the energy-momentum tensor
some extra constant terms, which may be interpreted as the
dark energy.

In conclusion, the extra force induced by the coupling
between matter and geometry does not vanish for any
specific choices of the matter Lagrangian. In the case of
the dust, with p ¼ 0, the extra force is given by

f� ¼ �r� ln½1þ �f2ðRÞ�ðu�u� � g��Þ; (22)

and it is independent of the thermodynamic properties of
the system, being completely determined by geometry,
kinematics, and coupling. In the limit of small velocities
and weak gravitational fields, the extra acceleration of a
dust fluid is given by

~a E ¼ ��r½f2ðRÞ�: (23)

The thermodynamic condition for the vanishing of the
extra force is @Lm=@g

�� ¼ ð1=2Þð@Lm=@�Þ�ðg�� �
u�u�Þ ¼ 0 only. If the matter Lagrangian is written as a

function of the pressure, then @Lm=@� ¼ ð@Lm=@pÞ�
ð@p=@�Þ, and for all physical systems satisfying an equa-
tion of state (or, equivalently, for all systems with a non-
zero sound velocity), the extra force is nonzero. Therefore,
the geometry-matter coupling is introduced in the general-
ized gravity models [18,19] in a consistent way. The cou-
pling determines all the physical properties of the system,

including the extra force, the matter Lagrangian, and the
energy-momentum tensor, respectively.
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APPENDIX: PROOF OF THE RELATION
�� ¼ 1

2�ðg�� � u�u�Þ�g��

Let us consider a fluid with density � in a system of
arbitrary coordinates x�. Let us introduce an arbitrary
coordinate transformation to a new coordinate system
a�, so that x
 ¼ f
ða�Þ, 
 ¼ 0, 1, 2, 3, � ¼ 0, 1, 2, 3.
In the new coordinate system a� the components of the
metric tensor ���ða�Þ are given by ���ða�Þ ¼ g
�ðx�Þ�
ð@f
=@a�Þð@f�=@a�Þ. We define the four-velocities of the
fluid in the two frames as u
 ¼ dx
=dsðxÞ and Q
 ¼
da
=dsðaÞ, where ds2ðxÞ ¼ g
�dx


dx� and ds2ðaÞ ¼
�
�da


da�, respectively. The fluid obeys the equations

of mass continuity, which in the two reference frames are
given by

1ffiffiffiffiffiffiffi�g
p @

@x

ð ffiffiffiffiffiffiffi�g
p

�u
Þ ¼ 0;

1ffiffiffiffiffiffiffiffi��
p @

@x

ð ffiffiffiffiffiffiffiffi��
p

�Q
Þ ¼ 0:

(A1)

In Eq. (A1) we have taken into account that � is a scalar
quantity; that is, it is invariant with respect to this coor-
dinate transformation. Let us now assume that the coordi-
nate transformation f
 takes our current coordinates of the
particles in the fluid, x�, to the initial coordinates of the
particles a� (the Lagrange coordinates). The correspond-
ing Lagrange coordinate system is a comoving coordinate
system—in it the fluid appears to be at rest. In Lagrange
coordinates the spacelike coordinates ak are constants,
ak ¼ akð0Þ, k ¼ 1, 2, 3. The fluid velocity in the comoving
coordinate system is

Q
 ¼ da


dsðaÞ
¼ �


0

�
g
�ðf�Þ @f




@a0
@f�

@a0

��1=2
: (A2)

In the Lagrangian coordinates a� the equation of con-
tinuity becomes

@

@a0

� ffiffiffiffiffiffiffiffi��
p

�

�
g
�ðf�Þ@f




@a0
@f�

@a0

��1=2
�
¼ 0; (A3)

and can be integrated immediately to give

ffiffiffiffiffiffiffiffi��
p

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�ðf�Þ @f




@a0
@f�

@a0

s
Fða1ð0Þ; a2ð0Þ; a3ð0ÞÞ;

(A4)

where F is an integration function, depending on the
Lagrange coordinates ak, k ¼ 1, 2, 3, only. Taking into
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account that
ffiffiffiffiffiffiffiffi��

p ¼ ffiffiffiffiffiffiffi�g
p ½@ðxÞ=@ðaÞ�, where @ðxÞ=@ðaÞ is

the absolute value of the Jacobian of the coordinate trans-
formation x
 ! a
, we obtain

�
ffiffiffiffiffiffiffi�g

p @ðxÞ
@ðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�ðf�Þ @f




@a0
@f�

@a0

s
Fða1ð0Þ; a2ð0Þ; a3ð0ÞÞ:

(A5)

In the a
 coordinates the velocity four-vector takes the
form

u
 ¼ df


dsðaÞ
¼

�
@f


@a0

��
g��ðf�Þ @f

�

@a0
@f�

@a0

��1=2
: (A6)

Since the Jacobian @ðxÞ=@ðaÞ, as well as the function
Fða1ð0Þ; a2ð0Þ; a3ð0ÞÞ, does not contain the quantities
g��, the variation with respect to g�� in Eq. (A5) gives

@ðxÞ
@ðaÞ�ð�

ffiffiffiffiffiffiffi�g
p Þ ¼ 1

2
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��ðf�Þ@f

�

@a0
@f�

@a0

s
u�u��g��:

(A7)

But

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��ðf�Þ@f

�

@a0
@f�

@a0

s
¼ �

ffiffiffiffiffiffiffi�g
p @ðxÞ

@ðaÞ ; (A8)

and therefore

�ð� ffiffiffiffiffiffiffi�g
p Þ ¼ 1

2

ffiffiffiffiffiffiffi�g
p ð�u�u�Þ�g��

¼ �1
2

ffiffiffiffiffiffiffi�g
p ð�u�u�Þ�g��: (A9)

Combining this equation with the known relation
�

ffiffiffiffiffiffiffi�g
p ¼ �ð1=2Þ ffiffiffiffiffiffiffi�g

p
g���g

�� gives

�� ¼ 1
2�ðg�� � u�u�Þ�g��: (A10)
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