7,925 research outputs found

    Effective Gap Equation for the Inhomogeneous LOFF Superconductive Phase

    Full text link
    We present an approximate gap equation for different crystalline structures of the LOFF phase of high density QCD at T=0. This equation is derived by using an effective condensate term obtained by averaging the inhomogeneous condensate over distances of the order of the crystal lattice size. The approximation is expected to work better far off any second order phase transition. As a function of the difference of the chemical potentials of the up and down quarks, δμ\delta\mu, we get that the octahedron is energetically favored from δμ=Δ0/2\delta\mu=\Delta_0/\sqrt 2 to 0.95Δ00.95\Delta_0, where Δ0\Delta_0 is the gap for the homogeneous phase, while in the range 0.95Δ0−1.32Δ00.95\Delta_0-1.32\Delta_0 the face centered cube prevails. At δμ=1.32Δ0\delta\mu=1.32\Delta_0 a first order phase transition to the normal phase occurs.Comment: 11 pages, 5 figure

    Chiral Loops and Ghost States in the Quenched Scalar Propagator

    Get PDF
    The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the η′\eta ' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an η′−π\eta '- \pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.Comment: 29 pages, 10 figures, Late

    Short distance current correlators: Comparing lattice simulations to the instanton liquid

    Get PDF
    Point to point correlators of currents are computed in quenched QCD using a chiral lattice fermion action, the overlap action. I compare correlators made of exact quark propagators with correlators restricted to low (less than 500 MeV) eigenvalue eigenmodes of the Dirac operator. In many cases they show qualitative resemblence (typically at small values of the quark mass and distances larger than 0.4 fm) and they differ qualitatively at larger quark masses or at very short distance. Lattice results are in qualitative agreement (and in the difference of vector and axial vector channels, quantitative agreement) with the expectations of instanton liquid models. The scalar channel shows the effects of a quenched finite volume zero mode artifact, a negative correlator.Comment: 18 pages, Revtex, 11 postscript figures. Some changes. Version to appear in Phys. Rev.

    Attosecond Control of Ionization Dynamics

    Get PDF
    Attosecond pulses can be used to initiate and control electron dynamics on a sub-femtosecond time scale. The first step in this process occurs when an atom absorbs an ultraviolet photon leading to the formation of an attosecond electron wave packet (EWP). Until now, attosecond pulses have been used to create free EWPs in the continuum, where they quickly disperse. In this paper we use a train of attosecond pulses, synchronized to an infrared (IR) laser field, to create a series of EWPs that are below the ionization threshold in helium. We show that the ionization probability then becomes a function of the delay between the IR and attosecond fields. Calculations that reproduce the experimental results demonstrate that this ionization control results from interference between transiently bound EWPs created by different pulses in the train. In this way, we are able to observe, for the first time, wave packet interference in a strongly driven atomic system.Comment: 8 pages, 4 figure

    Electron angular distributions in near-threshold atomic ionization

    Get PDF
    International audienceWe present angle- and energy-resolved measurements of photoelectrons produced in strongfield ionisation of Xe using a tunable femtosecond laser. An occurrence of highly oscillatory patterns in the angular distribution at low photoelectron kinetic energy is observed that correlates with channel closing/opening over a wide range of laser parameters. The correlation is investigated both experimentally and by means of systematic analysis of numerical solutions of the time-dependent Schrödinger equation (TDSE). Our experimental and numerical results are in quantitative agreement with the semi-classical model introduced by Arbó et al. (Phys. Rev. A 78, 013406 (2008)), which relates the oscillatory patterns to interference between photoelectrons produced during different cycles of the laser pulse in the course of non-resonant ionisation of the atom. We observe that an increase of the laser intensity eventually leads to qualitative invariance of the pattern, defining a limit on the applicability of the semi-classical model

    Comment on ``Evidence Against Instanton Dominance of Topological Charge Fluctuations in QCD''

    Get PDF
    We comment on the recent paper (hep-lat/0102003) by Horvath, Isgur, McCune, and Thacker, which concludes that the local chiral structure of fermionic eigenmodes is not consistent with instanton dominance. Our calculations, done with an overlap action, suggest the opposite conclusion.Comment: 5 pages, Revtex, 4 postscript figures. COLO-HEP-45
    • …
    corecore