20,633 research outputs found

    Directed flow as effect of transient matter rotation in hadron and nucleus collisions

    Full text link
    We discuss directed flow introduced for description of nucleus collisions and consider its possible behavior in hadronic and nuclei reactions due to rotation of the transient matter.Comment: 18 pages, 6 figure

    Phase control of La2CuO4 in thin-film synthesis

    Full text link
    The lanthanum copper oxide, La2CuO4, which is an end member of the prototype high-Tc superconductors (La,Sr)2CuO4 and (La,Ba)2CuO4, crystallizes in the "K2NiF4" structure in high-temperature bulk synthesis. The crystal chemistry, however, predicts that La2CuO4 is at the borderline of the K2NiF4 stability and that it can crystallize in the Nd2CuO4 structure at low synthesis temperatures. In this article we demonstrate that low-temperature thin-film synthesis actually crystallizes La2CuO4 in the Nd2CuO4 structure. We also show that the phase control of "K2NiF4"-type La2CuO4 versus "Nd2CuO4"-type La2CuO4 can be achieved by varying the synthesis temperature and using different substrates.Comment: 4 pages, 5 figures, submitted to PRB, revte

    General linear dynamics - quantum, classical or hybrid

    Full text link
    We describe our recent proposal of a path integral formulation of classical Hamiltonian dynamics. Which leads us here to a new attempt at hybrid dynamics, which concerns the direct coupling of classical and quantum mechanical degrees of freedom. This is of practical as well as of foundational interest and no fully satisfactory solution of this problem has been established to date. Related aspects will be observed in a general linear ensemble theory, which comprises classical and quantum dynamics in the form of Liouville and von Neumann equations, respectively, as special cases. Considering the simplest object characterized by a two-dimensional state-space, we illustrate how quantum mechanics is special in several respects among possible linear generalizations.Comment: 17 pages; based on invited talks at the conferences DICE2010 (Castiglioncello, Italia, Sept 13-17, 2010) and Quantum Field Theory and Gravity (Regensburg, Germany, Sept 28 - Oct 1, 2010

    Variational Thomas-Fermi Theory of a Nonuniform Bose Condensate at Zero Temperature

    Full text link
    We derive a description of the spatially inhomogeneous Bose-Einstein condensate which treats the system locally as a homogeneous system. This approach, similar to the Thomas-Fermi model for the inhomogeneous many-particle fermion system, is well-suited to describe the atomic Bose-Einstein condensates that have recently been obtained experimentally through atomic trapping and cooling. In this paper, we confine our attention to the zero temperature case, although the treatment can be generalized to finite temperatures, as we shall discuss elsewhere.Comment: 24 pages, latex, 6 ps figures, BoxedEPS include

    Sodium vacancy ordering and the co-existence of localized spins and itinerant charges in NaxCoO2

    Full text link
    The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides because the Co sits on a triangular lattice and its valence can be tuned over a wide range by varying the Na concentration x. Up to now detailed modeling of the rich phenomenology (which ranges from unconventional superconductivity to enhanced thermopower) has been hampered by the difficulty of controlling pure phases. We discovered that certain Na concentrations are specially stable and are associated with superlattice ordering of the Na clusters. This leads naturally to a picture of co-existence of localized spins and itinerant charge carriers. For x = 0.84 we found a remarkably small Fermi energy of 87 K. Our picture brings coherence to a variety of measurements ranging from NMR to optical to thermal transport. Our results also allow us to take the first step towards modeling the mysterious ``Curie-Weiss'' metal state at x = 0.71. We suggest the local moments may form a quantum spin liquid state and we propose experimental test of our hypothesis.Comment: 16 pages, 5 figure

    Doping evolution of the electronic structure in the single-layer cuprates Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta}: Comparison with other single-layer cuprates

    Full text link
    We have performed angle-resolved photoemission and core-level x-ray photoemission studies of the single-layer cuprate Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta} (Bi2201) and revealed the doping evolution of the electronic structure from the lightly-doped to optimally-doped regions. We have observed the formation of the dispersive quasi-particle band, evolution of the Fermi ``arc'' into the Fermi surface and the shift of the chemical potential with hole doping as in other cuprates. The doping evolution in Bi2201 is similar to that in Ca2−x_{2-x}Nax_{x}CuO2_{2}Cl2_2 (Na-CCOC), where a rapid chemical potential shift toward the lower Hubbard band of the parent insulator has been observed, but is quite different from that in La2−x_{2-x}Srx_{x}CuO4_{4} (LSCO), where the chemical potential does not shift, yet the dispersive band and the Fermi arc/surface are formed around the Fermi level already in the lightly-doped region. The (underlying) Fermi surface shape and band dispersions are quantitatively analyzed using tight-binding fit, and the deduced next-nearest-neighbor hopping integral t′t' also confirm the similarity to Na-CCOC and the difference from LSCO
    • …
    corecore