6,029 research outputs found

    Universal quasiparticle decoherence in hole- and electron-doped high-Tc cuprates

    Full text link
    We use angle-resolved photoemission to unravel the quasiparticle decoherence process in the high-TcT_c cuprates. The coherent band is highly renormalized, and the incoherent part manifests itself as a nearly vertical ``dive'' in the EE-kk intensity plot that approaches the bare band bottom. We find that the coherence-incoherence crossover energies in the hole- and electron-doped cuprates are quite different, but scale to their corresponding bare bandwidth. This rules out antiferromagnetic fluctuations as the main source for decoherence. We also observe the coherent band bottom at the zone center, whose intensity is strongly suppressed by the decoherence process. Consequently, the coherent band dispersion for both hole- and electron-doped cuprates is obtained, and is qualitatively consistent with the framework of Gutzwiller projection.Comment: 4 pages, 4 figure

    Evolution of Fermion Pairing from Three to Two Dimensions

    Full text link
    We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a strongly interacting Fermi gas of 6^6Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the 2D limit, the zero-temperature mean-field BEC-BCS theory.Comment: 5 pages, 4 figure

    Unusual photoemission resonances of oxygen-dopant induced states in Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x}

    Full text link
    We have performed an angular-resolved photoemission study of underdoped, optimally doped and overdoped Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x} samples using a wide photon energy range (15 - 100 eV). We report a small and broad non-dispersive A1g_{1g} peak in the energy distribution curves whose intensity scales with doping. We attribute it to a local impurity state similar to the one observed recently by scanning tunneling spectroscopy and identified as the oxygen dopants. Detailed analysis of the resonance profile and comparison with the single-layered Bi2_{2}Sr2_2CuO6+x_{6+x} suggest a mixing of this local state with Cu via the apical oxygens.Comment: 4 pages, 4 figure

    Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species

    Get PDF
    Comparative genomics provides a powerful tool to characterize the genetic differences among species that may be linked to their phenotypic variations. In the case of mosquito-associated Spiroplasma species, such approach is useful for the investigation of their differentiations in substrate utilization strategies and putative virulence factors. Among the four species that have been assessed for pathogenicity by artificial infection experiments, Spiroplasma culicicola and S. taiwanense were found to be pathogenic, whereas S. diminutum and S. sabaudiense were not. Intriguingly, based on the species phylogeny, the association with mosquito hosts and the gain or loss of pathogenicity in these species appears to have evolved independently. Through comparison of their complete genome sequences, we identified the genes and pathways that are shared by all or specific to one of these four species. Notably, we found that a glycerol-3-phosphate oxidase gene (glpO) is present in S. culicicola and S. taiwanense but not in S. diminutum or S. sabaudiense. Because this gene is involved in the production of reactive oxygen species and has been demonstrated as a major virulence factor in Mycoplasma, this distribution pattern suggests that it may be linked to the observed differences in pathogenicity among these species as well. Moreover, through comparative analysis with other Spiroplasma, Mycoplasma, and Mesoplasma species, we found that the absence of glpO in S. diminutum and S. sabaudiense is best explained by independent losses. Finally, our phylogenetic analyses revealed possible recombination of glpO between distantly related lineages and local rearrangements of adjacent genes

    Long range magnetic ordering in Na2_2IrO3_3

    Full text link
    We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na2_2IrO3_3, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir L3_3-edge, we find 3D long range antiferromagnetic order below TN_N=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the {\it a}-axis. Combining the experimental data with first principles calculations, we propose that the most likely spin structure is a novel "zig-zag" structure

    Temperature dependent d-d excitations in manganites probed by resonant inelastic x-ray scattering

    Full text link
    We report the observation of temperature dependent electronic excitations in various manganites utilizing resonant inelastic x-ray scattering (RIXS) at the Mn K-edge. Excitations were observed between 1.5 and 16 eV with temperature dependence found as high as 10 eV. The change in spectral weight between 1.5 and 5 eV was found to be related to the magnetic order and independent of the conductivity. On the basis of LDA+U and Wannier function calculations, this dependence is associated with intersite d-d excitations. Finally, the connection between the RIXS cross-section and the loss function is addressed.Comment: 5 pages, 5 figure
    corecore