315 research outputs found
Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation
Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects
Making sense of violence risk predictions using clinical notes
Violence risk assessment in psychiatric institutions enables interventions to avoid violence incidents. Clinical notes written by practitioners and available in electronic health records (EHR) are valuable resources that are seldom used to their full potential. Previous studies have attempted to assess violence risk in psychiatric patients using such notes, with acceptable performance. However, they do not explain why classification works and how it can be improved. We explore two methods to better understand the quality of a classifier in the context of clinical note analysis: random forests using topic models, and choice of evaluation metric. These methods allow us to understand both our data and our methodology more profoundly, setting up the groundwork for improved models that build upon this understanding. This is particularly important when it comes to the generalizability of evaluated classifiers to new data, a trustworthiness problem that is of great interest due to the increased availability of new data in electronic format
Tensile Creep and Creep-Recovery Behavior of a SiC-Fiber Si 3 N 4 -Matrix Composite
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65802/1/j.1151-2916.1993.tb03753.x.pd
Investigation of waste heat recovery system at supercritical conditions with vehicle drive cycles
Waste heat recovery (WHR) for internal combustion engines in vehicles using Organic Rankine cycle (ORC) has been a promising technology. The operation of the ORC WHR system in supercritical conditions has a potential to generate more power output and thermal efficiency compared with the conventional subcritical conditions. However, in supercritical conditions, the heat transfer process in the evaporator, the key component of the ORC WHR system, becomes unpredictable as the thermo-physical properties of the working fluid change with the temperature. Furthermore, the transient heat source from the vehicleâs exhaust makes the operation of the WHR system difficult. We investigated the performance of the ORC WHR system at supercritical conditions with engineâs exhaust data from real city and highway drive cycles. The effects of operating variables, such as refrigerant flow rates, evaporator and condenser pressure, and evaporator outlet temperature, on the performance indicators of the WHR system in supercritical conditions were examined. Simulation of operating parameters and the boundary of the WHR system are also included in this paper
Penalty Corner Routines in Elite Womenâs Indoor Field Hockey: Prediction of Outcomes based on Tactical Decisions
Indoor hockey is a highly competitive international sport, yet no research to date has investigated the key actions within this sport. As with outdoor field hockey, penalty corners represent one of the most likely situations in which goals can be scored. All 36 matches of the round-robin phase of the 2010-2011 England Hockey League Womenâs Premier Division âSuper Sixesâ competition were analysed with the purpose of establishing which factors can predict the scoring of a goal using Binary Logistic Regression analysis. Seventy two (22.6%) of the 319 observed penalty corners resulted in a goal. The strongest predictor of scoring a goal was taking the penalty corner from the goalkeeperâs right. Based on the odds ratio (OR), the odds of the attacking team scoring were 2.27 (CI = 1.41 - 3.65) times higher with penalty corners taken from the goalkeeperâs right as opposed to the left. Additionally, if the goalkeeper decided to rush to the edge of the circle, the odds of the attacking team failing to score were 2.19 (CI = 1.18 - 4.08) times higher compared to when the goalkeeper remained near the goal line. These results suggest that strategic decisions from the players and coaches have an important part to play in the success of penalty corners. Future research should investigate the impact of goalkeepersâ movement and further examine the technical and tactical intricacies of penalty corners
Subdiffraction, Luminescence-Depletion Imaging of Isolated, Giant, CdSe/CdS Nanocrystal Quantum Dots
Subdiffraction spatial resolution luminescence depletion imaging was performed with giant CdSe/14CdS nanocrystal quantum dots (g-NQDs) dispersed on a glass slide. Luminescence depletion imaging used a Gaussian shaped excitation laser pulse overlapped with a depletion pulse, shaped into a doughnut profile, with zero intensity in the center. Luminescence from a subdiffraction volume is collected from the central portion of the excitation spot, where no depletion takes place. Up to 92% depletion of the luminescence signal was achieved. An average full width at half-maximum of 40 ± 10 nm was measured in the lateral direction for isolated g-NQDs at an air interface using luminescence depletion imaging, whereas the average full width at half-maximum was 450 ± 90 nm using diffraction-limited, confocal luminescence imaging. Time-gating of the luminescence depletion data was required to achieve the stated spatial resolution. No observable photobleaching of the g-NQDs was present in the measurements, which allowed imaging with a dwell time of 250 ms per pixel to obtain images with a high signal-to-noise ratio. The mechanism for luminescence depletion is likely stimulated emission, stimulated absorption, or a combination of the two. The g-NQDs fulfill a need for versatile, photostable tags for subdiffraction imaging schemes where high laser powers or long exposure times are used
Finite element modelling of creep deformation in fibre-reinforced ceramic composites
The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-Si 3 N 4 matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44717/1/10853_2004_Article_BF00576283.pd
Sparsity-based single-shot sub-wavelength coherent diffractive imaging
We present the experimental reconstruction of sub-wavelength features from
the far-field intensity of sparse optical objects: sparsity-based
sub-wavelength imaging combined with phase-retrieval. As examples, we
demonstrate the recovery of random and ordered arrangements of 100 nm features
with the resolution of 30 nm, with an illuminating wavelength of 532 nm. Our
algorithmic technique relies on minimizing the number of degrees of freedom; it
works in real-time, requires no scanning, and can be implemented in all
existing microscopes - optical and non-optical
Tensile creep behaviour of a fibre-reinforced SiC-Si 3 N 4 composite
The tensile creep behaviour of a SiC-fibre-Si 3 N 4 -matrix composite was investigated in air at 1350 âĄC. The unidirectional composite, containing 30 vol % SCS-6 SiC fibres, was prepared by hot pressing at 1700 âĄC. Creep testing was conducted at stress levels of 70, 110, 150 and 190 MPa. An apparent steady-state creep rate was observed at stress levels between 70 and 150 MPa; at 190 MPa, only tertiary creep was observed. For an applied stress of 70 MPa, the steady-state creep rate was approximately 2.5Ă10 â10 s â1 with failure times in excess of 790 h. At 150 MPa, the steady-state creep rate increased to an average of 5.6Ă10 â8 s â1 with failure times under 40 h. The creep rate of the composite is compared with published data for the steady-state creep rate of monolithic Si 3 N 4 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44708/1/10853_2004_Article_BF00543607.pd
- âŠ