1,982 research outputs found

    Dipole trap model for the metallic state in gated silicon-inversion layers

    Full text link
    In order to investigate the metallic state in high-mobility Si-MOS structures, we have further developed and precised the dipole trap model which was originally proposed by B.L. Altshuler and D.L. Maslov [Phys. Rev. Lett.\ 82, 145 (1999)]. Our additional numerical treatment enables us to drop several approximations and to introduce a limited spatial depth of the trap states inside the oxide as well as to include a distribution of trap energies. It turns out that a pronounced metallic state can be caused by such trap states at appropriate energies whose behavior is in good agreement with experimental observations.Comment: 16 pages, 10 figures, submitte

    Building CMS Pixel Barrel Detectur Modules

    Get PDF
    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article describes the experience acquired during the assembly of the first ~200 modules.Comment: 5 pages, 7 figures, Vertex200

    Static and dynamic water structures at interfaces: A case study with focus on Pt(111)

    Get PDF
    An accurate atomistic treatment of aqueous solid–liquid interfaces necessitates the explicit description of interfacial water ideally via ab initio molecular dynamics simulations. Many applications, however, still rely on static interfacial water models, e.g., for the computation of (electro)chemical reaction barriers and focus on a single, prototypical structure. In this work, we systematically study the relation between density functional theory-derived static and dynamic interfacial water models with specific focus on the water–Pt(111) interface. We first introduce a general construction protocol for static 2D water layers on any substrate, which we apply to the low index surfaces of Pt. Subsequently, we compare these with structures from a broad selection of reference works based on the Smooth Overlap of Atomic Positions descriptor. The analysis reveals some structural overlap between static and dynamic water ensembles; however, static structures tend to overemphasize the in-plane hydrogen bonding network. This feature is especially pronounced for the widely used low-temperature hexagonal ice-like structure. In addition, a complex relation between structure, work function, and adsorption energy is observed, which suggests that the concentration on single, static water models might introduce systematic biases that are likely reduced by averaging over consistently created structural ensembles, as introduced here

    CMS Barrel Pixel Detector Overview

    Get PDF
    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.Comment: Proceedings of Vertex06, 15th International Workshop on Vertex Detector
    corecore