7,526 research outputs found

    A holistic approach examining RFID design for security and privacy

    Get PDF
    This paper adopts a holistic approach to Radio Frequency Identification (RFID) security that considers security and privacy under resource constraints concurrently. In this context, a practical realisation of a secure passive (battery-less) RFID tag is presented. The tag consists of an off the shelf front end combined with a bespoke 0.18 μm Application Specific Integrated Circuit (ASIC) assembled as a -sized prototype. The ASIC integrates the authors’ ultra low power novel Advanced Encryption Standard (AES) design together with a novel random number generator and a novel protocol, which provides both security and privacy. The analysis presented shows a security of 64-bits against many attack methods. Both modelled and measured power results are presented. The measured average core power consumed during continuous normal operation is 1.36 μW

    Spatial Structure of Ion Beams in an Expanding Plasma

    Full text link
    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas

    Field-theoretical approach to particle oscillations in absorbing matter

    Get PDF
    The abab oscillations in absorbing matter are considered. The standard model based on optical potential does not describe the total abab transition probability as well as the channel corresponding to absorption of the bb-particle. We calculate directly the off-diagonal matrix element in the framework of field-theoretical approach. Contrary to one-particle model, the final state absorption does not tend to suppress the channels mentioned above or, similarly, calculation with hermitian Hamiltonian leads to increase the corresponding values. The model reproduces all the results on the particle oscillations, however it is oriented to the description of the above-mentioned channels. Also we touch on the problem of infrared singularities. The approach under study is infrared-free.Comment: 27 pages, 8 figure

    A Theoretical Analysis of Two-Stage Recommendation for Cold-Start Collaborative Filtering

    Full text link
    In this paper, we present a theoretical framework for tackling the cold-start collaborative filtering problem, where unknown targets (items or users) keep coming to the system, and there is a limited number of resources (users or items) that can be allocated and related to them. The solution requires a trade-off between exploitation and exploration as with the limited recommendation opportunities, we need to, on one hand, allocate the most relevant resources right away, but, on the other hand, it is also necessary to allocate resources that are useful for learning the target's properties in order to recommend more relevant ones in the future. In this paper, we study a simple two-stage recommendation combining a sequential and a batch solution together. We first model the problem with the partially observable Markov decision process (POMDP) and provide an exact solution. Then, through an in-depth analysis over the POMDP value iteration solution, we identify that an exact solution can be abstracted as selecting resources that are not only highly relevant to the target according to the initial-stage information, but also highly correlated, either positively or negatively, with other potential resources for the next stage. With this finding, we propose an approximate solution to ease the intractability of the exact solution. Our initial results on synthetic data and the Movie Lens 100K dataset confirm the performance gains of our theoretical development and analysis

    The Next Generation of the Montage Image Mosaic Toolkit

    Get PDF
    The scientific computing landscape has evolved dramatically in the past few years, with new schemes for organizing and storing data that reflect the growth in size and complexity of astronomical data sets. In response to this changing landscape, we are, over the next two years, deploying the next generation of the Montage toolkit ([ascl:1010.036]). The first release (October 2015) supports multi-dimensional data sets ("data cubes"), and insertion of XMP/AVM tags that allows images to "drop-in" to the WWT. The same release offers a beta-version of web-based interactive visualization of images; this includes wrappers for visualization in Python. Subsequent releases will support HEALPix (now standard in cosmic background experiments); incorporation of Montage into package managers (which enable automated management of software builds), and support for a library that will enable Montage to be called directly from Python. This next generation toolkit will inherit the architectural benefits of the current engine - component based tools, ANSI-C portability across Unix platforms and scalability for distributed processing. With the expanded functionality under development, Montage can be viewed not simply as a mosaic engine, but as a scalable, portable toolkit for managing, organizing and processing images
    • …
    corecore