201 research outputs found

    Preliminary analysis of several microwave landing system flare elevation configurations

    Get PDF
    Configurations of MLS Flare Elevation Systems that can be considered reasonable and practical in actual implementation are identified. Each of these are analyzed and compared with respect to (1) computational requirement, (2) required coverage, and (3) accuracy including altitude and sink-rate estimation error performance

    Predictions of Cockpit Simulator Experimental Outcome Using System Models

    Get PDF
    This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted

    Analysis of estimation algorithms for CDTI and CAS applications

    Get PDF
    Estimation algorithms for Cockpit Display of Traffic Information (CDTI) and Collision Avoidance System (CAS) applications were analyzed and/or developed. The algorithms are based on actual or projected operational and performance characteristics of an Enhanced TCAS II traffic sensor developed by Bendix and the Federal Aviation Administration. Three algorithm areas are examined and discussed. These are horizontal x and y, range and altitude estimation algorithms. Raw estimation errors are quantified using Monte Carlo simulations developed for each application; the raw errors are then used to infer impacts on the CDTI and CAS applications. Applications of smoothing algorithms to CDTI problems are also discussed briefly. Technical conclusions are summarized based on the analysis of simulation results

    Functional design to support CDTI/DABS flight experiments

    Get PDF
    The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments

    Enhanced TCAS 2/CDTI traffic Sensor digital simulation model and program description

    Get PDF
    Digital simulation models of enhanced TCAS 2/CDTI traffic sensors are developed, based on actual or projected operational and performance characteristics. Two enhanced Traffic (or Threat) Alert and Collision Avoidance Systems are considered. A digital simulation program is developed in FORTRAN. The program contains an executive with a semireal time batch processing capability. The simulation program can be interfaced with other modules with a minimum requirement. Both the traffic sensor and CAS logic modules are validated by means of extensive simulation runs. Selected validation cases are discussed in detail, and capabilities and limitations of the actual and simulated systems are noted. The TCAS systems are not specifically intended for Cockpit Display of Traffic Information (CDTI) applications. These systems are sufficiently general to allow implementation of CDTI functions within the real systems' constraints

    Measurement by FIB on the ISS: Two Emissions of Solar Neutrons Detected?

    Get PDF
    A new type of solar neutron detector (FIB) was launched onboard the Space Shuttle Endeavour on July 16, 2009, and it began collecting data at the International Space Station (ISS) on August 25, 2009. This paper summarizes the three years of observations obtained by the solar neutron detector FIB until the end of July 2012. The solar neutron detector FIB can determine both the energy and arrival direction of neutrons. We measured the energy spectra of background neutrons over the SAA region and elsewhere, and found the typical trigger rates to be 20 counts/sec and 0.22 counts/sec, respectively. It is possible to identify solar neutrons to within a level of 0.028 counts/sec, provided that directional information is applied. Solar neutrons were observed in association with the M-class solar flares that occurred on March 7 (M3.7) and June 7 (M2.5) of 2011. This marked the first time that neutrons were observed in M-class solar flares. A possible interpretaion of the prodcution process is provided.Comment: 36 pages, 16 figures, and 3 Tables; Advanced in Astronmy, 2012, Special issue on Cosmic Ray Variablity:Century of Its Obseravtion

    Preliminary assessment of the microwave landing system requirements for STOL operations

    Get PDF
    The results of an investigation made to assess the Microwave Landing System (MLS) Requirements for use by civil STOL aircraft are described. The principal MLS characteristics investigated in the report were signal accuracy and volume of coverage. The study utilized a nonlinear six-degree-of-freedom digital simulation of a De Havilland Buffalo C-8A aircraft. Fully automatic control of timed curve flight down to touchdown was simulated. Selected MLS accuracy and coverage parameters for the azimuth, primary elevation, flare evelation and DME signals were varied. The resulting STOL aircraft system performance in following a representative curved flight path was statistically determined. Coverage requirements for STOL aircraft operating in the terminal area environment were also investigated
    corecore