1,773 research outputs found

    Paper Session II-B - The Emergence of Inland Spaceports

    Get PDF
    The unfulfilled demand for economical access to space has slowed the progress of many potential commercial projects stemming from NASA research. The commercialization of space is the next major business development on the horizon when the cost to launch can be reduced. This search will ultimately produce reusable launch vehicles. Coinciding with that development will be the demand for additional launch locations. This will lead many companies, such as telecommunications companies, aerospace developers and the newcomers to the travel industry, space tourism companies, to seek launch alternatives for development, testing and launches. At the state level, many lawmakers and economic development specialists have kept a vigilant watch on this current situation and have begun making strides toward establishing new facilities that are owned and operated by state governments. Unlike existing federal launch facilities, many of these facilities are being developed in inland states, such as Oklahoma. These inland spaceports offer the space industry an economically-feasible alternative to the federal launch facilities. This paper will examine the emergence of inland spaceports throughout the US, particularly the progress being made in Oklahoma. Various subtopics the paper will address include legislative needs, funding requirements, barriers and benefits to private industry. Further, readers will find information regarding the effects an inland spaceport may have on a community that is not yet accustomed to the idea

    Black String Perturbations in RS1 Model

    Full text link
    We present a general formalism for black string perturbations in Randall-Sundrum 1 model (RS1). First, we derive the master equation for the electric part of the Weyl tensor EμνE_{\mu\nu}. Solving the master equation using the gradient expansion method, we give the effective Teukolsky equation on the brane at low energy. It is useful to estimate gravitational waves emitted by perturbed rotating black strings. We also argue the effect of the Gregory-Laflamme instability on the brane using our formalism.Comment: 14 pages, Based on a talk presented at ACRGR4, the 4th Australasian Conference on General Relativity and Gravitation, Monash University, Melbourne, January 2004. To appear in the proceedings, in General Relativity and Gravitatio

    Spectrum from the warped compactifications with the de Sitter universe

    Full text link
    We discuss the spectrum of the tensor metric perturbations and the stability of warped compactifications with the de Sitter spacetime in the higher-dimensional gravity. The spacetime structure is given in terms of the warped product of the non-compact direction, the spherical internal dimensions and the four-dimensional de Sitter spacetime. To realize a finite bulk volume, we construct the brane world model, using the cut-copy-paste method. Then, we compactify the spherical directions on the brane. In any case, we show the existence of the massless zero mode and the mass gap of it with massive Kaluza-Klein modes. Although the brane involves the spherical dimensions, no light massive mode is excited. We also investigate the scalar perturbations, and show that the model is unstable due to the existence of a tachyonic bound state, which seems to have the universal negative mass square, irrespective of the number of spacetime dimensions.Comment: Journal version (JHEP

    Non-Gaussian features from the inverse volume corrections in loop quantum cosmology

    Full text link
    In this paper we study the non-Gaussian features of the primordial fluctuations in loop quantum cosmology with the inverse volume corrections. The detailed analysis is performed in the single field slow-roll inflationary models. However, our results reflect the universal characteristics of bispectrum in loop quantum cosmology. The main corrections to the scalar bispectrum come from two aspects: one is the modifications to the standard Bunch-Davies vacuum, the other is the corrections to the background dependent variables, such as slow-roll parameters. Our calculations show that the loop quantum corrections make fNLf_{{\rm NL}} of the inflationary models increase 0.1%. Moreover, we find that two new shapes arise, namely F1\mathcal F_{1} and F2\mathcal F_{2}. The former gives a unique loop quantum feature which is less correlated with the local, equilateral and single types, while the latter is highly correlated with the local one.Comment: matched to the published version. 30 pages, 4 figure

    High-energy effective theory for matter on close Randall Sundrum branes

    Full text link
    Extending the analysis of hep-th/0504128, we obtain a formal expression for the coupling between brane matter and the radion in a Randall-Sundrum braneworld. This effective theory is correct to all orders in derivatives of the radion in the limit of small brane separation, and, in particular, contains no higher than second derivatives. In the case of cosmological symmetry the theory can be obtained in closed form and reproduces the five-dimensional behaviour. Perturbations in the tensor and scalar sectors are then studied. When the branes are moving, the effective Newtonian constant on the brane is shown to depend both on the distance between the branes and on their velocity. In the small distance limit, we compute the exact dependence between the four-dimensional and the five-dimensional Newtonian constants.Comment: Updated version as published in PR

    K-Chameleon and the Coincidence Problem

    Full text link
    In this paper we present a hybrid model of k-essence and chameleon, named as k-chameleon. In this model, due to the chameleon mechanism, the directly strong coupling between the k-chameleon field and matters (cold dark matters and baryons) is allowed. In the radiation dominated epoch, the interaction between the k-chameleon field and background matters can be neglected, the behavior of the k-chameleon therefore is the same as that of the ordinary k-essence. After the onset of matter domination, the strong coupling between the k-chameleon and matters dramatically changes the result of the ordinary k-essence. We find that during the matter-dominated epoch, only two kinds of attractors may exist: one is the familiar {\bf K} attractor and the other is a completely {\em new}, dubbed {\bf C} attractor. Once the universe is attracted into the {\bf C} attractor, the fraction energy densities of the k-chameleon Ωϕ\Omega_{\phi} and dust matter Ωm\Omega_m are fixed and comparable, and the universe will undergo a power-law accelerated expansion. One can adjust the model so that the {\bf K} attractor do not appear. Thus, the k-chameleon model provides a natural solution to the cosmological coincidence problem.Comment: Revtex, 17 pages; v2: 18 pages, two figures, more comments and references added, to appear in PRD, v3: published versio

    Special functions associated to a certain fourth order differential equation

    Full text link
    We develop a theory of "special functions" associated to a certain fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} on R\mathbb{R} depending on two parameters μ,ν\mu,\nu. For integers μ,ν1\mu,\nu\geq-1 with μ+ν2N0\mu+\nu\in2\mathbb{N}_0 this operator extends to a self-adjoint operator on L2(R+,xμ+ν+1dx)L^2(\mathbb{R}_+,x^{\mu+\nu+1}dx) with discrete spectrum. We find a closed formula for the generating functions of the eigenfunctions, from which we derive basic properties of the eigenfunctions such as orthogonality, completeness, L2L^2-norms, integral representations and various recurrence relations. This fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} arises as the radial part of the Casimir action in the Schr\"odinger model of the minimal representation of the group O(p,q)O(p,q), and our "special functions" give KK-finite vectors
    corecore