307 research outputs found

    Symmetric Diblock Copolymers in Thin Films (I): Phase stability in Self-Consistent Field Calculations and Monte Carlo Simulations

    Full text link
    We investigate the phase behavior of symmetric AB diblock copolymers confined into a thin film. The film boundaries are parallel, impenetrable and attract the A component of the diblock copolymer. Using a self-consistent field technique [M.W. Matsen, J.Chem.Phys. {\bf 106}, 7781 (1997)], we study the ordered phases as a function of incompatibility χ\chi and film thickness in the framework of the Gaussian chain model. For large film thickness and small incompatibility, we find first order transitions between phases with different number of lamellae which are parallel oriented to the film boundaries. At high incompatibility or small film thickness, transitions between parallel oriented and perpendicular oriented lamellae occur. We compare the self-consistent field calculations to Monte Carlo simulations of the bond fluctuation model for chain length N=32. In the simulations we quench several systems from χN=0\chi N=0 to χN=30\chi N=30 and monitor the morphology into which the diblock copolymers assemble. Three film thicknesses are investigated, corresponding to parallel oriented lamellae with 2 and 4 interfaces and a perpendicular oriented morphology. Good agreement between self-consistent field calculations and Monte Carlo simulations is found.Comment: to appear in J.Chem.Phy

    Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans

    Get PDF
    Autophagy is a ubiquitous catabolic process that causes cellular bulk degradation of cytoplasmic components and is generally associated with positive effects on health and longevity. Inactivation of autophagy has been linked with detrimental effects on cells and organisms. The antagonistic pleiotropy theory postulates that some fitness-promoting genes during youth are harmful during aging. On this basis, we examined genes mediating post-reproductive longevity using an RNAi screen. From this screen, we identified 30 novel regulators of post-reproductive longevity, including pha-4 Through downstream analysis of pha-4, we identified that the inactivation of genes governing the early stages of autophagy up until the stage of vesicle nucleation, such as bec-1, strongly extend both life span and health span. Furthermore, our data demonstrate that the improvements in health and longevity are mediated through the neurons, resulting in reduced neurodegeneration and sarcopenia. We propose that autophagy switches from advantageous to harmful in the context of an age-associated dysfunction

    Phase diagram for diblock copolymer melts under cylindrical confinement

    Full text link
    We extensively study the phase diagram of a diblock copolymer melt confined in a cylindrical nanopore using real-space self-consistent mean-field theory. We discover a rich variety of new two-dimensional equilibrium structures that have no analog in the unconfined system. These include non-hexagonally coordinated cylinder phases and structures intermediate between lamellae and cylinders. We map the stability regions and phase boundaries for all the structures we find. As the pore radius is decreased, the pore accommodates fewer cylindrical domains and structural transitions occur as cylinders are eliminated. Our results are consistent with experiments, but we also predict phases yet to be observed.Comment: 12 pages, 3 figures. submitted to Physical Review Letter

    Large well-relaxed models of vitreous silica, coordination numbers and entropy

    Full text link
    A Monte Carlo method is presented for the simulation of vitreous silica. Well-relaxed networks of vitreous silica are generated containing up to 300,000 atoms. The resulting networks, quenched under the BKS potential, display smaller bond-angle variations and lower defect concentrations, as compared to networks generated with molecular dynamics. The total correlation functions T(r) of our networks are in excellent agreement with neutron scattering data, provided that thermal effects and the maximum inverse wavelength used in the experiment are included in the comparison. A procedure commonly used in experiments to obtain coordination numbers from scattering data is to fit peaks in rT(r) with a gaussian. We show that this procedure can easily produce incorrect results. Finally, we estimate the configurational entropy of vitreous silica.Comment: 7 pages, 4 figures (two column version to save paper

    A symmetric polymer blend confined into a film with antisymmetric surfaces: interplay between wetting behavior and phase diagram

    Full text link
    We study the phase behavior of a symmetric binary polymer blend which is confined into a thin film. The film surfaces interact with the monomers via short range potentials. We calculate the phase behavior within the self-consistent field theory of Gaussian chains. Over a wide range of parameters we find strong first order wetting transitions for the semi-infinite system, and the interplay between the wetting/prewetting behavior and the phase diagram in confined geometry is investigated. Antisymmetric boundaries, where one surface attracts the A component with the same strength than the opposite surface attracts the B component, are applied. The phase transition does not occur close to the bulk critical temperature but in the vicinity of the wetting transition. For very thin films or weak surface fields one finds a single critical point at ϕc=1/2\phi_c=1/2. For thicker films or stronger surface fields the phase diagram exhibits two critical points and two concomitant coexistence regions. Only below a triple point there is a single two phase coexistence region. When we increase the film thickness the two coexistence regions become the prewetting lines of the semi-infinite system, while the triple temperature converges towards the wetting transition temperature from above. The behavior close to the tricritical point, which separates phase diagrams with one and two critical points, is studied in the framework of a Ginzburg-Landau ansatz. Two-dimensional profiles of the interface between the laterally coexisting phases are calculated, and the interfacial and line tensions analyzed. The effect of fluctuations and corrections to the self-consistent field theory are discussed.Comment: Phys.Rev.E in prin

    Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments

    Full text link
    We present NanoImprint lithography experiments and modeling of thin films of block copolymers (BCP). The NanoImprint lithography is used to align perpendicularly lamellar phases, over distances much larger than the natural lamellar periodicity. The modeling relies on self-consistent field calculations done in two- and three-dimensions. We get a good agreement with the NanoImprint lithography setups. We find that, at thermodynamical equilibrium, the ordered BCP lamellae are much better aligned than when the films are deposited on uniform planar surfaces

    The Ursinus Weekly, October 18, 1973

    Get PDF
    U.S.G.A. initiates tough new policy, vows good supervision of open houses • Ursinus admission requirements, unlike national trends, maintain standards • Cooperative atmosphere at education banquet • Ursinus karate club holds demonstration • Chapel program begins • College Union calendar full • Debating club forming; Mr. Perreten will head group • Editorial: On the outside looking in; Autumn at Ursinus • Letters to the Editor: Early riser protests; Declaration of independence; Compromise called for • Alumni Corner • Film: “Heavy Traffic” • Bagpiper Bud Hamilton plays at first College Union program • Ornithology - flocking together Supersax plays Bird • Library staff portrait: Mr. James Rue • Bearettes down Glassboro, F&M, and Bucks County • Another game, another loss • Cross country wins roll on • Soccer team now 3-2https://digitalcommons.ursinus.edu/weekly/1002/thumbnail.jp

    Perception of COVID-19 pandemic restrictions on dental researchers

    Get PDF
    Background/objectives: Historical evidence shows a gender-based disproportionate effect of pandemics across different populations. In 2020, the coronavirus disease 2019 (COVID-19) pandemic began spreading its devastating effects worldwide. The goal of the present study was to investigate the effect of the COVID-19 pandemic on research productivity, work-life arrangements, and mental health of dental professionals worldwide with focus on gender differences. Methods: A 38-item survey, concerning demographics, career stage, employer support, family structure, mental health, and relationships, was distributed to 7692 active members of the International Association for Dental Research. Bivariate associations between independent variables and the primary outcome variable were tested using Spearman's correlation test. A logistic regression model was used to assess the simultaneous, independent associations between each variable and researcher productivity. Results: A total of 722 responses were obtained, indicating a 9.4% response rate. Higher productivity was reported by male respondents (p = 0.021), and by those in senior career stages (p = 0.001). Institutional support was associated with higher productivity (p < 0.0001). Lower productivity was reported by younger researchers (p = 0.003). Remote work negatively affected productivity (p < 0.0001) and female respondents reported working more hours, regardless of work location (p = 0.004). Poor mental health was associated with low productivity (p < 0.0001). Conclusions: Our results showed that the COVID-19 pandemic significantly affected dental professionals’ perceived productivity and mental health around the globe. Younger individuals and women were disproportionally affected, and institutional support had a significant influence to mitigate effects of the pandemic for dental researchers

    Block Copolymer at Nano-Patterned Surfaces

    Full text link
    We present numerical calculations of lamellar phases of block copolymers at patterned surfaces. We model symmetric di-block copolymer films forming lamellar phases and the effect of geometrical and chemical surface patterning on the alignment and orientation of lamellar phases. The calculations are done within self-consistent field theory (SCFT), where the semi-implicit relaxation scheme is used to solve the diffusion equation. Two specific set-ups, motivated by recent experiments, are investigated. In the first, the film is placed on top of a surface imprinted with long chemical stripes. The stripes interact more favorably with one of the two blocks and induce a perpendicular orientation in a large range of system parameters. However, the system is found to be sensitive to its initial conditions, and sometimes gets trapped into a metastable mixed state composed of domains in parallel and perpendicular orientations. In a second set-up, we study the film structure and orientation when it is pressed against a hard grooved mold. The mold surface prefers one of the two components and this set-up is found to be superior for inducing a perfect perpendicular lamellar orientation for a wide range of system parameters
    corecore