137 research outputs found

    Inversionless light amplification and optical switching controlled by state-dependent alignment of molecules

    Full text link
    We propose a method to achieve amplification without population inversion by anisotropic molecules whose orientation by an external electric field is state-dependent. It is based on decoupling of the lower-state molecules from the resonant light while the excited ones remain emitting. The suitable class of molecules is discussed, the equation for the gain factor is derived, and the magnitude of the inversionless amplification is estimated for the typical experimental conditions. Such switching of the sample from absorbing to amplifying via transparent state is shown to be possible both with the aid of dc and ac control electric fields.Comment: AMS-LaTeX v1.2, 4 pages with 4 figure

    Inversionless gain in a three-level system driven by a strong field and collisions

    Get PDF
    Inversionless gain in a three-level system driven by a strong external field and by collisions with a buffer gas is investigated. The mechanism of populating of the upper laser level contributed by the collision transfer as well as by relaxation caused by a buffer gas is discussed in detail. Explicit formulae for analysis of optimal conditions are derived. The mechanism developed here for the incoherent pump could be generalized to other systems.Comment: RevTeX, 9 pages, 4 eps figure

    Experimental implementation of a four-level N-type scheme for the observation of Electromagnetically Induced Transparency

    Full text link
    A nondegenerate four-level N-type scheme was experimentally implemented to observe electromagnetically induced transparency (EIT) at the 87^{87}Rb D2_{2} line. Radiations of two independent external-cavity semiconductor lasers were used in the experiment, the current of one of them being modulated at a frequency equal to the hyperfine-splitting frequency of the excited 5P3/2_{3/2} level. In this case, apart from the main EIT dip corresponding to the two-photon Raman resonance in a three-level Λ\Lambda-scheme, additional dips detuned from the main dip by a frequency equal to the frequency of the HF generator were observed in the absorption spectrum. These dips were due to an increase in the medium transparency at frequencies corresponding to the three-photon Raman resonances in four-level N-type schemes. The resonance shapes are analyzed as functions of generator frequency and magnetic field.Comment: 3 pages, 2 figure

    Autler - Townes doublet probed by strong field

    Full text link
    This paper deals with the Autler - Townes doublet structure. Applied driving and probing laser fields can have arbitrary intensities. The explanation is given of the broadening of doublet components with the growth of probing field intensity, which was observed in experiment. The effects of Doppler averaging are discussed.Comment: 12 pages, RevTeX, 5 figures in 9 file

    Spatial evolution of short pulses under coherent population trapping

    Full text link
    Spatial and temporal evolution is studied of two powerful short laser pulses having different wavelengths and interacting with a dense three-level Lambda-type optical medium under coherent population trapping. A general case of unequal oscillator strengths of the transitions is considered. Durations of the probe pulse and the coupling pulse T1,2T_{1,2} (T2>T1T_2>T_1) are assumed to be shorter than any of the relevant atomic relaxation times. We propose analytical and numerical solutions of a self-consistent set of coupled Schr\"{o}dinger equations and reduced wave equations in the adiabatic limit with the account of the first non-adiabatic correction. The adiabaticity criterion is also discussed with the account of the pulse propagation. The dynamics of propagation is found to be strongly dependent on the ratio of the transition oscillator strengths. It is shown that envelopes of the pulses slightly change throughout the medium length at the initial stage of propagation. This distance can be large compared to the one-photon resonant absorption length. Eventually, the probe pulse is completely reemitted into the coupling pulse during propagation. The effect of localization of the atomic coherence has been observed similar to the one predicted by Fleischhauer and Lukin (PRL, {\bf 84}, 5094 (2000).Comment: 16 pages revtex style, 7 EPS figures, accepted to Physical Review

    Boundary-layer turbulence as a kangaroo process

    Get PDF
    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent (with → in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields 0.58. © 1995 The American Physical Society
    • …
    corecore