1,842 research outputs found

    New method to simulate quantum interference using deterministic processes and application to event-based simulation of quantum computation

    Full text link
    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-by-event basis and demonstrate that the simulation results are in excellent agreement with quantum theory. We also show that this approach can be generalized to simulate universal quantum computers.Comment: J. Phys. Soc. Jpn. (in press) http://www.compphys.net/dl

    Possible Experience: from Boole to Bell

    Full text link
    Mainstream interpretations of quantum theory maintain that violations of the Bell inequalities deny at least either realism or Einstein locality. Here we investigate the premises of the Bell-type inequalities by returning to earlier inequalities presented by Boole and the findings of Vorob'ev as related to these inequalities. These findings together with a space-time generalization of Boole's elements of logic lead us to a completely transparent Einstein local counterexample from everyday life that violates certain variations of the Bell inequalities. We show that the counterexample suggests an interpretation of the Born rule as a pre-measure of probability that can be transformed into a Kolmogorov probability measure by certain Einstein local space-time characterizations of the involved random variables.Comment: Published in: EPL, 87 (2009) 6000

    Small quantum networks operating as quantum thermodynamic machines

    Full text link
    We show that a 3-qubit system as studied for quantum information purposes can alternatively be used as a thermodynamic machine when driven in finite time and interfaced between two split baths. The spins are arranged in a chain where the working spin in the middle exercises Carnot cycles the area of which defines the exchanged work. The cycle orientation (sign of the exchanged work) flips as the difference of bath temperatures goes through a critical value.Comment: RevTeX, 4 pages, 7 figures. Replaced by version accepted for publication in EP

    Exact solution for a diffusive nonequilibrium steady state of an open quantum chain

    Full text link
    We calculate a nonequilibrium steady state of a quantum XX chain in the presence of dephasing and driving due to baths at chain ends. The obtained state is exact in the limit of weak driving while the expressions for one- and two-point correlations are exact for an arbitrary driving strength. In the steady state the magnetization profile and the spin current display diffusive behavior. Spin-spin correlation function on the other hand has long-range correlations which though decay to zero in either the thermodynamical limit or for equilibrium driving. At zero dephasing a nonequilibrium phase transition occurs from a ballistic transport having short-range correlations to a diffusive transport with long-range correlations.Comment: 5 page

    Quantitative aspects of entanglement in the optically driven quantum dots

    Full text link
    We present a novel approach to look for the existence of maximum entanglement in a system of two identical quantum dots coupled by the Forster process and interacting with a classical laser field. Our approach is not only able to explain the existing treatments, but also provides further detailed insights into the coupled dynamics of quantum dots systems. The result demonstrates that there are two ways for generating maximum entangled states, one associated with far off-resonance interaction, and the other associated with the weak field limit. Moreover, it is shown that exciton decoherence results in the decay of entanglement.Comment: 13 pages, 4 figure

    Quantum Trajectory Approach to the Stochastic Thermodynamics of a Forced Harmonic Oscillator

    Full text link
    I formulate a quantum stochastic thermodynamics for the quantum trajectories of a continuously-monitored forced harmonic oscillator coupled to a thermal reservoir. Consistent trajectory-dependent definitions are introduced for work, heat, and entropy, through engineering the thermal reservoir from a sequence of two-level systems. Within this formalism the connection between irreversibility and entropy production is analyzed and confirmed by proving a detailed fluctuation theorem for quantum trajectories. Finally, possible experimental verifications are discussed.Comment: 16 pages, 3 figures, submitted to PRE; expanded introduction and conclusion, corrected typos, new figure

    Greybody factors in a rotating black-hole background-II : fermions and gauge bosons

    Full text link
    We study the emission of fermion and gauge boson degrees of freedom on the brane by a rotating higher-dimensional black hole. Using matching techniques, for the near-horizon and far-field regime solutions, we solve analytically the corresponding field equations of motion. From this, we derive analytical results for the absorption probabilities and Hawking radiation emission rates, in the low-energy and low-rotation case, for both species of fields. We produce plots of these, comparing them to existing exact numerical results with very good agreement. We also study the total absorption cross-section and demonstrate that, as in the non-rotating case, it has a different behaviour for fermions and gauge bosons in the low-energy limit, while it follows a universal behaviour -- reaching a constant, spin-independent, asymptotic value -- in the high-energy regime.Comment: 22 pages, 8 figures, added reference

    Work extremum principle: Structure and function of quantum heat engines

    Full text link
    We consider a class of quantum heat engines consisting of two subsystems interacting via a unitary transformation and coupled to two separate baths at different temperatures Th>TcT_h > T_c. The purpose of the engine is to extract work due to the temperature difference. Its dynamics is not restricted to the near equilibrium regime. The engine structure is determined by maximizing the extracted work under various constraints. When this maximization is carried out at finite power, the engine dynamics is described by well-defined temperatures and satisfies the local version of the second law. In addition, its efficiency is bounded from below by the Curzon-Ahlborn value 1Tc/Th1-\sqrt{T_c/T_h} and from above by the Carnot value 1(Tc/Th)1-(T_c/T_h). The latter is reached|at finite power|for a macroscopic engine, while the former is achieved in the equilibrium limit ThTcT_h\to T_c. When the work is maximized at a zero power, even a small (few-level) engine extracts work right at the Carnot efficiency.Comment: 16 pages, 5 figure

    Exact solution of Markovian master equations for quadratic fermi systems: thermal baths, open XY spin chains, and non-equilibrium phase transition

    Full text link
    We generalize the method of third quantization to a unified exact treatment of Redfield and Lindblad master equations for open quadratic systems of n fermions in terms of diagonalization of 4n x 4n matrix. Non-equilibrium thermal driving in terms of the Redfield equation is analyzed in detail. We explain how to compute all physically relevant quantities, such as non-equilibrium expectation values of local observables, various entropies or information measures, or time evolution and properties of relaxation. We also discuss how to exactly treat explicitly time dependent problems. The general formalism is then applied to study a thermally driven open XY spin 1/2 chain. We find that recently proposed non-equilibrium quantum phase transition in the open XY chain survives the thermal driving within the Redfield model. In particular, the phase of long-range magnetic correlations can be characterized by hypersensitivity of the non-equilibrium-steady state to external (bath or bulk) parameters. Studying the heat transport we find negative thermal conductance for sufficiently strong thermal driving, as well as non-monotonic dependence of the heat current on the strength of the bath coupling.Comment: 24 pages, 12 figures, submitted to New Journal of Physics, Focus issue "Quantum Information and Many-Body Theory

    Decoherence due to contacts in ballistic nanostructures

    Full text link
    The active region of a ballistic nanostructure is an open quantum-mechanical system, whose nonunitary evolution (decoherence) towards a nonequilibrium steady state is determined by carrier injection from the contacts. The purpose of this paper is to provide a simple theoretical description of the contact-induced decoherence in ballistic nanostructures, which is established within the framework of the open systems theory. The active region's evolution in the presence of contacts is generally non-Markovian. However, if the contacts' energy relaxation due to electron-electron scattering is sufficiently fast, then the contacts can be considered memoryless on timescales coarsened over their energy relaxation time, and the evolution of the current-limiting active region can be considered Markovian. Therefore, we first derive a general Markovian map in the presence of a memoryless environment, by coarse-graining the exact short-time non-Markovian dynamics of an abstract open system over the environment memory-loss time, and we give the requirements for the validity of this map. We then introduce a model contact-active region interaction that describes carrier injection from the contacts for a generic two-terminal ballistic nanostructure. Starting from this model interaction and using the Markovian dynamics derived by coarse-graining over the effective memory-loss time of the contacts, we derive the formulas for the nonequilibrium steady-state distribution functions of the forward and backward propagating states in the nanostructure's active region. On the example of a double-barrier tunneling structure, the present approach yields an I-V curve with all the prominent resonant features. The relationship to the Landauer-B\"{u}ttiker formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio
    corecore