58 research outputs found

    Protein Kinase C Activation Has Distinct Effects on the Localization, Phosphorylation and Detergent Solubility of the Claudin Protein Family in Tight and Leaky Epithelial Cells

    Get PDF
    We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier

    Long-term trends in the diurnal cycles of precipitation frequency in Japan

    No full text

    Overexpression of the RADICAL-INDUCED CELL DEATH1 (RCD1) Gene of Arabidopsis Causes Weak rcd1 Phenotype with Compromised Oxidative-Stress Responses

    Get PDF
    rcd1 is a mutant of Arabidopsis thaliana that is more resistant to methyl viologen, but more sensitive to ozone than the wild type. rcd1-2 is caused by a single nucleotide substitution that results in a premature stop codon at Trp-332. The rcd1-2 mRNA level does not change significantly with the mutation. Since overexpression of rcd1-1 cDNA has been shown to bring about an rcd1-like phenotype, we created and examined the overexpression lines of RCD1 by the use of the cauliflower mosaic virus 35S promoter. The transgenic lines exhibited a weak rcd1-like phenotype, although no resistance to methyl viologen was observed. Further, they fully complemented the aberrant rcd1-2 phenotype. Subcellular localization of RCD1 was examined by transiently expressing green fluorescent protein (GFP) fused with RCD1 in onion epidermal cells. GFP signals are observed as aggregated foci in the inner nuclear matrix-like region

    Climatology of Mesoscale Warm and Cold Fronts in the Kanto Plain.

    No full text

    SPACE-TIME CHARACTERISTICS OF DIURNAL RAINFALL VARIATION IN MATSUYAMA PLAIN

    No full text

    Nonhydrostatic Atmospheric Models and Operational Development at JMA

    No full text
    corecore